Staging
v0.5.0
https://github.com/python/cpython
Raw File
Tip revision: 29360893df0931703cb2fe0c0fbc0fc963e64ead authored by Georg Brandl on 20 February 2011, 10:31:59 UTC
Make a 3.2 maintenance branch.
Tip revision: 2936089
posixpath.py
"""Common operations on Posix pathnames.

Instead of importing this module directly, import os and refer to
this module as os.path.  The "os.path" name is an alias for this
module on Posix systems; on other systems (e.g. Mac, Windows),
os.path provides the same operations in a manner specific to that
platform, and is an alias to another module (e.g. macpath, ntpath).

Some of this can actually be useful on non-Posix systems too, e.g.
for manipulation of the pathname component of URLs.
"""

import os
import sys
import stat
import genericpath
from genericpath import *

__all__ = ["normcase","isabs","join","splitdrive","split","splitext",
           "basename","dirname","commonprefix","getsize","getmtime",
           "getatime","getctime","islink","exists","lexists","isdir","isfile",
           "ismount", "expanduser","expandvars","normpath","abspath",
           "samefile","sameopenfile","samestat",
           "curdir","pardir","sep","pathsep","defpath","altsep","extsep",
           "devnull","realpath","supports_unicode_filenames","relpath"]

# Strings representing various path-related bits and pieces.
# These are primarily for export; internally, they are hardcoded.
curdir = '.'
pardir = '..'
extsep = '.'
sep = '/'
pathsep = ':'
defpath = ':/bin:/usr/bin'
altsep = None
devnull = '/dev/null'

def _get_sep(path):
    if isinstance(path, bytes):
        return b'/'
    else:
        return '/'

# Normalize the case of a pathname.  Trivial in Posix, string.lower on Mac.
# On MS-DOS this may also turn slashes into backslashes; however, other
# normalizations (such as optimizing '../' away) are not allowed
# (another function should be defined to do that).

def normcase(s):
    """Normalize case of pathname.  Has no effect under Posix"""
    # TODO: on Mac OS X, this should really return s.lower().
    if not isinstance(s, (bytes, str)):
        raise TypeError("normcase() argument must be str or bytes, "
                        "not '{}'".format(s.__class__.__name__))
    return s


# Return whether a path is absolute.
# Trivial in Posix, harder on the Mac or MS-DOS.

def isabs(s):
    """Test whether a path is absolute"""
    sep = _get_sep(s)
    return s.startswith(sep)


# Join pathnames.
# Ignore the previous parts if a part is absolute.
# Insert a '/' unless the first part is empty or already ends in '/'.

def join(a, *p):
    """Join two or more pathname components, inserting '/' as needed.
    If any component is an absolute path, all previous path components
    will be discarded."""
    sep = _get_sep(a)
    path = a
    for b in p:
        if b.startswith(sep):
            path = b
        elif not path or path.endswith(sep):
            path +=  b
        else:
            path += sep + b
    return path


# Split a path in head (everything up to the last '/') and tail (the
# rest).  If the path ends in '/', tail will be empty.  If there is no
# '/' in the path, head  will be empty.
# Trailing '/'es are stripped from head unless it is the root.

def split(p):
    """Split a pathname.  Returns tuple "(head, tail)" where "tail" is
    everything after the final slash.  Either part may be empty."""
    sep = _get_sep(p)
    i = p.rfind(sep) + 1
    head, tail = p[:i], p[i:]
    if head and head != sep*len(head):
        head = head.rstrip(sep)
    return head, tail


# Split a path in root and extension.
# The extension is everything starting at the last dot in the last
# pathname component; the root is everything before that.
# It is always true that root + ext == p.

def splitext(p):
    if isinstance(p, bytes):
        sep = b'/'
        extsep = b'.'
    else:
        sep = '/'
        extsep = '.'
    return genericpath._splitext(p, sep, None, extsep)
splitext.__doc__ = genericpath._splitext.__doc__

# Split a pathname into a drive specification and the rest of the
# path.  Useful on DOS/Windows/NT; on Unix, the drive is always empty.

def splitdrive(p):
    """Split a pathname into drive and path. On Posix, drive is always
    empty."""
    return p[:0], p


# Return the tail (basename) part of a path, same as split(path)[1].

def basename(p):
    """Returns the final component of a pathname"""
    sep = _get_sep(p)
    i = p.rfind(sep) + 1
    return p[i:]


# Return the head (dirname) part of a path, same as split(path)[0].

def dirname(p):
    """Returns the directory component of a pathname"""
    sep = _get_sep(p)
    i = p.rfind(sep) + 1
    head = p[:i]
    if head and head != sep*len(head):
        head = head.rstrip(sep)
    return head


# Is a path a symbolic link?
# This will always return false on systems where os.lstat doesn't exist.

def islink(path):
    """Test whether a path is a symbolic link"""
    try:
        st = os.lstat(path)
    except (os.error, AttributeError):
        return False
    return stat.S_ISLNK(st.st_mode)

# Being true for dangling symbolic links is also useful.

def lexists(path):
    """Test whether a path exists.  Returns True for broken symbolic links"""
    try:
        os.lstat(path)
    except os.error:
        return False
    return True


# Are two filenames really pointing to the same file?

def samefile(f1, f2):
    """Test whether two pathnames reference the same actual file"""
    s1 = os.stat(f1)
    s2 = os.stat(f2)
    return samestat(s1, s2)


# Are two open files really referencing the same file?
# (Not necessarily the same file descriptor!)

def sameopenfile(fp1, fp2):
    """Test whether two open file objects reference the same file"""
    s1 = os.fstat(fp1)
    s2 = os.fstat(fp2)
    return samestat(s1, s2)


# Are two stat buffers (obtained from stat, fstat or lstat)
# describing the same file?

def samestat(s1, s2):
    """Test whether two stat buffers reference the same file"""
    return s1.st_ino == s2.st_ino and \
           s1.st_dev == s2.st_dev


# Is a path a mount point?
# (Does this work for all UNIXes?  Is it even guaranteed to work by Posix?)

def ismount(path):
    """Test whether a path is a mount point"""
    if islink(path):
        # A symlink can never be a mount point
        return False
    try:
        s1 = os.lstat(path)
        if isinstance(path, bytes):
            parent = join(path, b'..')
        else:
            parent = join(path, '..')
        s2 = os.lstat(parent)
    except os.error:
        return False # It doesn't exist -- so not a mount point :-)
    dev1 = s1.st_dev
    dev2 = s2.st_dev
    if dev1 != dev2:
        return True     # path/.. on a different device as path
    ino1 = s1.st_ino
    ino2 = s2.st_ino
    if ino1 == ino2:
        return True     # path/.. is the same i-node as path
    return False


# Expand paths beginning with '~' or '~user'.
# '~' means $HOME; '~user' means that user's home directory.
# If the path doesn't begin with '~', or if the user or $HOME is unknown,
# the path is returned unchanged (leaving error reporting to whatever
# function is called with the expanded path as argument).
# See also module 'glob' for expansion of *, ? and [...] in pathnames.
# (A function should also be defined to do full *sh-style environment
# variable expansion.)

def expanduser(path):
    """Expand ~ and ~user constructions.  If user or $HOME is unknown,
    do nothing."""
    if isinstance(path, bytes):
        tilde = b'~'
    else:
        tilde = '~'
    if not path.startswith(tilde):
        return path
    sep = _get_sep(path)
    i = path.find(sep, 1)
    if i < 0:
        i = len(path)
    if i == 1:
        if 'HOME' not in os.environ:
            import pwd
            userhome = pwd.getpwuid(os.getuid()).pw_dir
        else:
            userhome = os.environ['HOME']
    else:
        import pwd
        name = path[1:i]
        if isinstance(name, bytes):
            name = str(name, 'ASCII')
        try:
            pwent = pwd.getpwnam(name)
        except KeyError:
            return path
        userhome = pwent.pw_dir
    if isinstance(path, bytes):
        userhome = os.fsencode(userhome)
        root = b'/'
    else:
        root = '/'
    userhome = userhome.rstrip(root) or userhome
    return userhome + path[i:]


# Expand paths containing shell variable substitutions.
# This expands the forms $variable and ${variable} only.
# Non-existent variables are left unchanged.

_varprog = None
_varprogb = None

def expandvars(path):
    """Expand shell variables of form $var and ${var}.  Unknown variables
    are left unchanged."""
    global _varprog, _varprogb
    if isinstance(path, bytes):
        if b'$' not in path:
            return path
        if not _varprogb:
            import re
            _varprogb = re.compile(br'\$(\w+|\{[^}]*\})', re.ASCII)
        search = _varprogb.search
        start = b'{'
        end = b'}'
    else:
        if '$' not in path:
            return path
        if not _varprog:
            import re
            _varprog = re.compile(r'\$(\w+|\{[^}]*\})', re.ASCII)
        search = _varprog.search
        start = '{'
        end = '}'
    i = 0
    while True:
        m = search(path, i)
        if not m:
            break
        i, j = m.span(0)
        name = m.group(1)
        if name.startswith(start) and name.endswith(end):
            name = name[1:-1]
        if isinstance(name, bytes):
            name = str(name, 'ASCII')
        if name in os.environ:
            tail = path[j:]
            value = os.environ[name]
            if isinstance(path, bytes):
                value = value.encode('ASCII')
            path = path[:i] + value
            i = len(path)
            path += tail
        else:
            i = j
    return path


# Normalize a path, e.g. A//B, A/./B and A/foo/../B all become A/B.
# It should be understood that this may change the meaning of the path
# if it contains symbolic links!

def normpath(path):
    """Normalize path, eliminating double slashes, etc."""
    if isinstance(path, bytes):
        sep = b'/'
        empty = b''
        dot = b'.'
        dotdot = b'..'
    else:
        sep = '/'
        empty = ''
        dot = '.'
        dotdot = '..'
    if path == empty:
        return dot
    initial_slashes = path.startswith(sep)
    # POSIX allows one or two initial slashes, but treats three or more
    # as single slash.
    if (initial_slashes and
        path.startswith(sep*2) and not path.startswith(sep*3)):
        initial_slashes = 2
    comps = path.split(sep)
    new_comps = []
    for comp in comps:
        if comp in (empty, dot):
            continue
        if (comp != dotdot or (not initial_slashes and not new_comps) or
             (new_comps and new_comps[-1] == dotdot)):
            new_comps.append(comp)
        elif new_comps:
            new_comps.pop()
    comps = new_comps
    path = sep.join(comps)
    if initial_slashes:
        path = sep*initial_slashes + path
    return path or dot


def abspath(path):
    """Return an absolute path."""
    if not isabs(path):
        if isinstance(path, bytes):
            cwd = os.getcwdb()
        else:
            cwd = os.getcwd()
        path = join(cwd, path)
    return normpath(path)


# Return a canonical path (i.e. the absolute location of a file on the
# filesystem).

def realpath(filename):
    """Return the canonical path of the specified filename, eliminating any
symbolic links encountered in the path."""
    if isinstance(filename, bytes):
        sep = b'/'
        empty = b''
    else:
        sep = '/'
        empty = ''
    if isabs(filename):
        bits = [sep] + filename.split(sep)[1:]
    else:
        bits = [empty] + filename.split(sep)

    for i in range(2, len(bits)+1):
        component = join(*bits[0:i])
        # Resolve symbolic links.
        if islink(component):
            resolved = _resolve_link(component)
            if resolved is None:
                # Infinite loop -- return original component + rest of the path
                return abspath(join(*([component] + bits[i:])))
            else:
                newpath = join(*([resolved] + bits[i:]))
                return realpath(newpath)

    return abspath(filename)


def _resolve_link(path):
    """Internal helper function.  Takes a path and follows symlinks
    until we either arrive at something that isn't a symlink, or
    encounter a path we've seen before (meaning that there's a loop).
    """
    paths_seen = set()
    while islink(path):
        if path in paths_seen:
            # Already seen this path, so we must have a symlink loop
            return None
        paths_seen.add(path)
        # Resolve where the link points to
        resolved = os.readlink(path)
        if not isabs(resolved):
            dir = dirname(path)
            path = normpath(join(dir, resolved))
        else:
            path = normpath(resolved)
    return path

supports_unicode_filenames = (sys.platform == 'darwin')

def relpath(path, start=None):
    """Return a relative version of a path"""

    if not path:
        raise ValueError("no path specified")

    if isinstance(path, bytes):
        curdir = b'.'
        sep = b'/'
        pardir = b'..'
    else:
        curdir = '.'
        sep = '/'
        pardir = '..'

    if start is None:
        start = curdir

    start_list = [x for x in abspath(start).split(sep) if x]
    path_list = [x for x in abspath(path).split(sep) if x]

    # Work out how much of the filepath is shared by start and path.
    i = len(commonprefix([start_list, path_list]))

    rel_list = [pardir] * (len(start_list)-i) + path_list[i:]
    if not rel_list:
        return curdir
    return join(*rel_list)
back to top