Staging
v0.5.1
https://github.com/python/cpython
Revision f4d644f36ffb6cb11b34bfcf533c14cfaebf709a authored by Gregory P. Smith on 30 January 2018, 05:27:39 UTC, committed by GitHub on 30 January 2018, 05:27:39 UTC
Do not allow receiving a SIGINT to cause the subprocess module to trigger an
immediate SIGKILL of the child process.  SIGINT is normally sent to all child
processes by the OS at the same time already as was the established normal
behavior in 2.7 and 3.2.  This behavior change was introduced during the fix to https://bugs.python.org/issue12494 and is generally surprising to command line
tool users who expect other tools launched in child processes to get their own
SIGINT and do their own cleanup.

In Python 3.3-3.6 subprocess.call and subprocess.run would immediately
SIGKILL the child process upon receiving a SIGINT (which raises a
KeyboardInterrupt).  We now give the child a small amount of time to
exit gracefully before resorting to a SIGKILL.

This is also the case for subprocess.Popen.__exit__ which would
previously block indefinitely waiting for the child to die.  This was
hidden from many users by virtue of subprocess.call and subprocess.run
sending the signal immediately.

Behavior change: subprocess.Popen.__exit__ will not block indefinitely
when the exiting exception is a KeyboardInterrupt.  This is done for
user friendliness as people expect their ^C to actually happen.  This
could cause occasional orphaned Popen objects when not using `call` or
`run` with a child process that hasn't exited.

Refactoring involved: The Popen.wait method deals with the
KeyboardInterrupt second chance, existing platform specific internals
have been renamed to _wait().
Also fixes comment typos.
1 parent 83e64c8
Raw File
Tip revision: f4d644f36ffb6cb11b34bfcf533c14cfaebf709a authored by Gregory P. Smith on 30 January 2018, 05:27:39 UTC
bpo-25942: make subprocess more graceful on ^C (GH-5026)
Tip revision: f4d644f
future.c
#include "Python.h"
#include "Python-ast.h"
#include "node.h"
#include "token.h"
#include "graminit.h"
#include "code.h"
#include "symtable.h"

#define UNDEFINED_FUTURE_FEATURE "future feature %.100s is not defined"
#define ERR_LATE_FUTURE \
"from __future__ imports must occur at the beginning of the file"

static int
future_check_features(PyFutureFeatures *ff, stmt_ty s, PyObject *filename)
{
    int i;
    asdl_seq *names;

    assert(s->kind == ImportFrom_kind);

    names = s->v.ImportFrom.names;
    for (i = 0; i < asdl_seq_LEN(names); i++) {
        alias_ty name = (alias_ty)asdl_seq_GET(names, i);
        const char *feature = PyUnicode_AsUTF8(name->name);
        if (!feature)
            return 0;
        if (strcmp(feature, FUTURE_NESTED_SCOPES) == 0) {
            continue;
        } else if (strcmp(feature, FUTURE_GENERATORS) == 0) {
            continue;
        } else if (strcmp(feature, FUTURE_DIVISION) == 0) {
            continue;
        } else if (strcmp(feature, FUTURE_ABSOLUTE_IMPORT) == 0) {
            continue;
        } else if (strcmp(feature, FUTURE_WITH_STATEMENT) == 0) {
            continue;
        } else if (strcmp(feature, FUTURE_PRINT_FUNCTION) == 0) {
            continue;
        } else if (strcmp(feature, FUTURE_UNICODE_LITERALS) == 0) {
            continue;
        } else if (strcmp(feature, FUTURE_BARRY_AS_BDFL) == 0) {
            ff->ff_features |= CO_FUTURE_BARRY_AS_BDFL;
        } else if (strcmp(feature, FUTURE_GENERATOR_STOP) == 0) {
            continue;
        } else if (strcmp(feature, FUTURE_ANNOTATIONS) == 0) {
            ff->ff_features |= CO_FUTURE_ANNOTATIONS;
        } else if (strcmp(feature, "braces") == 0) {
            PyErr_SetString(PyExc_SyntaxError,
                            "not a chance");
            PyErr_SyntaxLocationObject(filename, s->lineno, s->col_offset);
            return 0;
        } else {
            PyErr_Format(PyExc_SyntaxError,
                         UNDEFINED_FUTURE_FEATURE, feature);
            PyErr_SyntaxLocationObject(filename, s->lineno, s->col_offset);
            return 0;
        }
    }
    return 1;
}

static int
future_parse(PyFutureFeatures *ff, mod_ty mod, PyObject *filename)
{
    int i, done = 0, prev_line = 0;

    if (!(mod->kind == Module_kind || mod->kind == Interactive_kind))
        return 1;

    if (asdl_seq_LEN(mod->v.Module.body) == 0)
        return 1;

    /* A subsequent pass will detect future imports that don't
       appear at the beginning of the file.  There's one case,
       however, that is easier to handle here: A series of imports
       joined by semi-colons, where the first import is a future
       statement but some subsequent import has the future form
       but is preceded by a regular import.
    */

    for (i = 0; i < asdl_seq_LEN(mod->v.Module.body); i++) {
        stmt_ty s = (stmt_ty)asdl_seq_GET(mod->v.Module.body, i);

        if (done && s->lineno > prev_line)
            return 1;
        prev_line = s->lineno;

        /* The tests below will return from this function unless it is
           still possible to find a future statement.  The only things
           that can precede a future statement are another future
           statement and a doc string.
        */

        if (s->kind == ImportFrom_kind) {
            identifier modname = s->v.ImportFrom.module;
            if (modname &&
                _PyUnicode_EqualToASCIIString(modname, "__future__")) {
                if (done) {
                    PyErr_SetString(PyExc_SyntaxError,
                                    ERR_LATE_FUTURE);
                    PyErr_SyntaxLocationObject(filename, s->lineno, s->col_offset);
                    return 0;
                }
                if (!future_check_features(ff, s, filename))
                    return 0;
                ff->ff_lineno = s->lineno;
            }
            else {
                done = 1;
            }
        }
        else {
            done = 1;
        }
    }
    return 1;
}


PyFutureFeatures *
PyFuture_FromASTObject(mod_ty mod, PyObject *filename)
{
    PyFutureFeatures *ff;

    ff = (PyFutureFeatures *)PyObject_Malloc(sizeof(PyFutureFeatures));
    if (ff == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    ff->ff_features = 0;
    ff->ff_lineno = -1;

    if (!future_parse(ff, mod, filename)) {
        PyObject_Free(ff);
        return NULL;
    }
    return ff;
}


PyFutureFeatures *
PyFuture_FromAST(mod_ty mod, const char *filename_str)
{
    PyFutureFeatures *ff;
    PyObject *filename;

    filename = PyUnicode_DecodeFSDefault(filename_str);
    if (filename == NULL)
        return NULL;
    ff = PyFuture_FromASTObject(mod, filename);
    Py_DECREF(filename);
    return ff;
}
back to top