Staging
v0.8.1
https://github.com/python/cpython
Revision dae5d728bc3f1d4039b64e4ec3a9036fd5d19587 authored by Miss Islington (bot) on 10 November 2020, 19:58:27 UTC, committed by GitHub on 10 November 2020, 19:58:27 UTC
Fix an assertion error in format() in debug build for floating point
formatting with "n" format, zero padding and small width. Release build is
not impacted. Patch by Karthikeyan Singaravelan.
(cherry picked from commit 3f7983a25a3d19779283c707fbdd5bc91b1587ef)

Co-authored-by: Xtreak <tir.karthi@gmail.com>
1 parent a63234c
Raw File
Tip revision: dae5d728bc3f1d4039b64e4ec3a9036fd5d19587 authored by Miss Islington (bot) on 10 November 2020, 19:58:27 UTC
bpo-35560: Remove assertion from format(float, "n") (GH-11288) (GH-23231)
Tip revision: dae5d72
thread_nt.h

/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
/* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
/* Eliminated some memory leaks, gsw@agere.com */

#include <windows.h>
#include <limits.h>
#ifdef HAVE_PROCESS_H
#include <process.h>
#endif

/* options */
#ifndef _PY_USE_CV_LOCKS
#define _PY_USE_CV_LOCKS 1     /* use locks based on cond vars */
#endif

/* Now, define a non-recursive mutex using either condition variables
 * and critical sections (fast) or using operating system mutexes
 * (slow)
 */

#if _PY_USE_CV_LOCKS

#include "condvar.h"

typedef struct _NRMUTEX
{
    PyMUTEX_T cs;
    PyCOND_T cv;
    int locked;
} NRMUTEX;
typedef NRMUTEX *PNRMUTEX;

PNRMUTEX
AllocNonRecursiveMutex()
{
    PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX));
    if (!m)
        return NULL;
    if (PyCOND_INIT(&m->cv))
        goto fail;
    if (PyMUTEX_INIT(&m->cs)) {
        PyCOND_FINI(&m->cv);
        goto fail;
    }
    m->locked = 0;
    return m;
fail:
    PyMem_RawFree(m);
    return NULL;
}

VOID
FreeNonRecursiveMutex(PNRMUTEX mutex)
{
    if (mutex) {
        PyCOND_FINI(&mutex->cv);
        PyMUTEX_FINI(&mutex->cs);
        PyMem_RawFree(mutex);
    }
}

DWORD
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
{
    DWORD result = WAIT_OBJECT_0;
    if (PyMUTEX_LOCK(&mutex->cs))
        return WAIT_FAILED;
    if (milliseconds == INFINITE) {
        while (mutex->locked) {
            if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
                result = WAIT_FAILED;
                break;
            }
        }
    } else if (milliseconds != 0) {
        /* wait at least until the target */
        DWORD now, target = GetTickCount() + milliseconds;
        while (mutex->locked) {
            if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, (long long)milliseconds*1000) < 0) {
                result = WAIT_FAILED;
                break;
            }
            now = GetTickCount();
            if (target <= now)
                break;
            milliseconds = target-now;
        }
    }
    if (!mutex->locked) {
        mutex->locked = 1;
        result = WAIT_OBJECT_0;
    } else if (result == WAIT_OBJECT_0)
        result = WAIT_TIMEOUT;
    /* else, it is WAIT_FAILED */
    PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
    return result;
}

BOOL
LeaveNonRecursiveMutex(PNRMUTEX mutex)
{
    BOOL result;
    if (PyMUTEX_LOCK(&mutex->cs))
        return FALSE;
    mutex->locked = 0;
    result = PyCOND_SIGNAL(&mutex->cv);
    result &= PyMUTEX_UNLOCK(&mutex->cs);
    return result;
}

#else /* if ! _PY_USE_CV_LOCKS */

/* NR-locks based on a kernel mutex */
#define PNRMUTEX HANDLE

PNRMUTEX
AllocNonRecursiveMutex()
{
    return CreateSemaphore(NULL, 1, 1, NULL);
}

VOID
FreeNonRecursiveMutex(PNRMUTEX mutex)
{
    /* No in-use check */
    CloseHandle(mutex);
}

DWORD
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
{
    return WaitForSingleObjectEx(mutex, milliseconds, FALSE);
}

BOOL
LeaveNonRecursiveMutex(PNRMUTEX mutex)
{
    return ReleaseSemaphore(mutex, 1, NULL);
}
#endif /* _PY_USE_CV_LOCKS */

long PyThread_get_thread_ident(void);

/*
 * Initialization of the C package, should not be needed.
 */
static void
PyThread__init_thread(void)
{
}

/*
 * Thread support.
 */

typedef struct {
    void (*func)(void*);
    void *arg;
} callobj;

/* thunker to call adapt between the function type used by the system's
thread start function and the internally used one. */
static unsigned __stdcall
bootstrap(void *call)
{
    callobj *obj = (callobj*)call;
    void (*func)(void*) = obj->func;
    void *arg = obj->arg;
    HeapFree(GetProcessHeap(), 0, obj);
    func(arg);
    return 0;
}

long
PyThread_start_new_thread(void (*func)(void *), void *arg)
{
    HANDLE hThread;
    unsigned threadID;
    callobj *obj;

    dprintf(("%ld: PyThread_start_new_thread called\n",
             PyThread_get_thread_ident()));
    if (!initialized)
        PyThread_init_thread();

    obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj));
    if (!obj)
        return -1;
    obj->func = func;
    obj->arg = arg;
    hThread = (HANDLE)_beginthreadex(0,
                      Py_SAFE_DOWNCAST(_pythread_stacksize,
                                       Py_ssize_t, unsigned int),
                      bootstrap, obj,
                      0, &threadID);
    if (hThread == 0) {
        /* I've seen errno == EAGAIN here, which means "there are
         * too many threads".
         */
        int e = errno;
        dprintf(("%ld: PyThread_start_new_thread failed, errno %d\n",
                 PyThread_get_thread_ident(), e));
        threadID = (unsigned)-1;
        HeapFree(GetProcessHeap(), 0, obj);
    }
    else {
        dprintf(("%ld: PyThread_start_new_thread succeeded: %p\n",
                 PyThread_get_thread_ident(), (void*)hThread));
        CloseHandle(hThread);
    }
    return (long) threadID;
}

/*
 * Return the thread Id instead of a handle. The Id is said to uniquely identify the
 * thread in the system
 */
long
PyThread_get_thread_ident(void)
{
    if (!initialized)
        PyThread_init_thread();

    return GetCurrentThreadId();
}

void
PyThread_exit_thread(void)
{
    dprintf(("%ld: PyThread_exit_thread called\n", PyThread_get_thread_ident()));
    if (!initialized)
        exit(0);
    _endthreadex(0);
}

/*
 * Lock support. It has to be implemented as semaphores.
 * I [Dag] tried to implement it with mutex but I could find a way to
 * tell whether a thread already own the lock or not.
 */
PyThread_type_lock
PyThread_allocate_lock(void)
{
    PNRMUTEX aLock;

    dprintf(("PyThread_allocate_lock called\n"));
    if (!initialized)
        PyThread_init_thread();

    aLock = AllocNonRecursiveMutex() ;

    dprintf(("%ld: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock));

    return (PyThread_type_lock) aLock;
}

void
PyThread_free_lock(PyThread_type_lock aLock)
{
    dprintf(("%ld: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock));

    FreeNonRecursiveMutex(aLock) ;
}

/*
 * Return 1 on success if the lock was acquired
 *
 * and 0 if the lock was not acquired. This means a 0 is returned
 * if the lock has already been acquired by this thread!
 */
PyLockStatus
PyThread_acquire_lock_timed(PyThread_type_lock aLock,
                            PY_TIMEOUT_T microseconds, int intr_flag)
{
    /* Fow now, intr_flag does nothing on Windows, and lock acquires are
     * uninterruptible.  */
    PyLockStatus success;
    PY_TIMEOUT_T milliseconds;

    if (microseconds >= 0) {
        milliseconds = microseconds / 1000;
        if (microseconds % 1000 > 0)
            ++milliseconds;
        if ((DWORD) milliseconds != milliseconds)
            Py_FatalError("Timeout too large for a DWORD, "
                           "please check PY_TIMEOUT_MAX");
    }
    else
        milliseconds = INFINITE;

    dprintf(("%ld: PyThread_acquire_lock_timed(%p, %lld) called\n",
             PyThread_get_thread_ident(), aLock, microseconds));

    if (aLock && EnterNonRecursiveMutex((PNRMUTEX)aLock,
                                        (DWORD)milliseconds) == WAIT_OBJECT_0) {
        success = PY_LOCK_ACQUIRED;
    }
    else {
        success = PY_LOCK_FAILURE;
    }

    dprintf(("%ld: PyThread_acquire_lock(%p, %lld) -> %d\n",
             PyThread_get_thread_ident(), aLock, microseconds, success));

    return success;
}
int
PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
{
    return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0);
}

void
PyThread_release_lock(PyThread_type_lock aLock)
{
    dprintf(("%ld: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock));

    if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock)))
        dprintf(("%ld: Could not PyThread_release_lock(%p) error: %ld\n", PyThread_get_thread_ident(), aLock, GetLastError()));
}

/* minimum/maximum thread stack sizes supported */
#define THREAD_MIN_STACKSIZE    0x8000          /* 32kB */
#define THREAD_MAX_STACKSIZE    0x10000000      /* 256MB */

/* set the thread stack size.
 * Return 0 if size is valid, -1 otherwise.
 */
static int
_pythread_nt_set_stacksize(size_t size)
{
    /* set to default */
    if (size == 0) {
        _pythread_stacksize = 0;
        return 0;
    }

    /* valid range? */
    if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) {
        _pythread_stacksize = size;
        return 0;
    }

    return -1;
}

#define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x)


/* use native Windows TLS functions */
#define Py_HAVE_NATIVE_TLS

#ifdef Py_HAVE_NATIVE_TLS
int
PyThread_create_key(void)
{
    DWORD result= TlsAlloc();
    if (result == TLS_OUT_OF_INDEXES)
        return -1;
    return (int)result;
}

void
PyThread_delete_key(int key)
{
    TlsFree(key);
}

int
PyThread_set_key_value(int key, void *value)
{
    BOOL ok;

    ok = TlsSetValue(key, value);
    if (!ok)
        return -1;
    return 0;
}

void *
PyThread_get_key_value(int key)
{
    /* because TLS is used in the Py_END_ALLOW_THREAD macro,
     * it is necessary to preserve the windows error state, because
     * it is assumed to be preserved across the call to the macro.
     * Ideally, the macro should be fixed, but it is simpler to
     * do it here.
     */
    DWORD error = GetLastError();
    void *result = TlsGetValue(key);
    SetLastError(error);
    return result;
}

void
PyThread_delete_key_value(int key)
{
    /* NULL is used as "key missing", and it is also the default
     * given by TlsGetValue() if nothing has been set yet.
     */
    TlsSetValue(key, NULL);
}

/* reinitialization of TLS is not necessary after fork when using
 * the native TLS functions.  And forking isn't supported on Windows either.
 */
void
PyThread_ReInitTLS(void)
{}

#endif
back to top