Staging
v0.8.1
https://github.com/torvalds/linux
Revision b29c701deacd5d24453127c37ed77ef851c53b8b authored by Henry Nestler on 12 May 2008, 13:44:39 UTC, committed by Ingo Molnar on 12 June 2008, 19:26:07 UTC
Page faults in kernel address space between PAGE_OFFSET up to
VMALLOC_START should not try to map as vmalloc.

Fix rarely endless page faults inside mount_block_root for root
filesystem at boot time.

All 32bit kernels up to 2.6.25 can fail into this hole.
I can not present this under native linux kernel. I see, that the 64bit
has fixed the problem. I copied the same lines into 32bit part.

Recorded debugs are from coLinux kernel 2.6.22.18 (virtualisation):
http://www.henrynestler.com/colinux/testing/pfn-check-0.7.3/20080410-antinx/bug16-recursive-page-fault-endless.txt
The physicaly memory was trimmed down to 192MB to better catch the bug.
More memory gets the bug more rarely.

Details, how every x86 32bit system can fail:

Start from "mount_block_root",
http://lxr.linux.no/linux/init/do_mounts.c#L297
There the variable "fs_names" got one memory page with 4096 bytes.
Variable "p" walks through the existing file system types. The first
string is no problem.
But, with the second loop in mount_block_root the offset of "p" is not
at beginning of page, the offset is for example +9, if "reiserfs" is the
first in list.
Than calls do_mount_root, and lands in sys_mount.
Remember: Variable "type_page" contains now "fs_type+9" and not contains
a full page.
The sys_mount copies 4096 bytes with function "exact_copy_from_user()":
http://lxr.linux.no/linux/fs/namespace.c#L1540

Mostly exist pages after the buffer "fs_names+4096+9" and the page fault
handler was not called. No problem.

In the case, if the page after "fs_names+4096" is not mapped, the page
fault handler was called from http://lxr.linux.no/linux/fs/namespace.c#L1320

The do_page_fault gots an address 0xc03b4000.
It's kernel address, address >= TASK_SIZE, but not from vmalloc! It's
from "__getname()" alias "kmem_cache_alloc".
The "error_code" is 0. "vmalloc_fault" will be call:
http://lxr.linux.no/linux/arch/i386/mm/fault.c#L332

"vmalloc_fault" tryed to find the physical page for a non existing
virtual memory area. The macro "pte_present" in vmalloc_fault()
got a next page fault for 0xc0000ed0 at:
http://lxr.linux.no/linux/arch/i386/mm/fault.c#L282

No PTE exist for such virtual address. The page fault handler was trying
to sync the physical page for the PTE lockup.

This called vmalloc_fault() again for address 0xc000000, and that also
was not existing. The endless began...

In normal case the cpu would still loop with disabled interrrupts. Under
coLinux this was catched by a stack overflow inside printk debugs.

Signed-off-by: Henry Nestler <henry.nestler@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
1 parent 3703f39
Raw File
Tip revision: b29c701deacd5d24453127c37ed77ef851c53b8b authored by Henry Nestler on 12 May 2008, 13:44:39 UTC
x86: fix endless page faults in mount_block_root for Linux 2.6
Tip revision: b29c701
gf128mul.c
/* gf128mul.c - GF(2^128) multiplication functions
 *
 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
 *
 * Based on Dr Brian Gladman's (GPL'd) work published at
 * http://fp.gladman.plus.com/cryptography_technology/index.htm
 * See the original copyright notice below.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 */

/*
 ---------------------------------------------------------------------------
 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software in both source and binary
 form is allowed (with or without changes) provided that:

   1. distributions of this source code include the above copyright
      notice, this list of conditions and the following disclaimer;

   2. distributions in binary form include the above copyright
      notice, this list of conditions and the following disclaimer
      in the documentation and/or other associated materials;

   3. the copyright holder's name is not used to endorse products
      built using this software without specific written permission.

 ALTERNATIVELY, provided that this notice is retained in full, this product
 may be distributed under the terms of the GNU General Public License (GPL),
 in which case the provisions of the GPL apply INSTEAD OF those given above.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue 31/01/2006

 This file provides fast multiplication in GF(128) as required by several
 cryptographic authentication modes
*/

#include <crypto/gf128mul.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>

#define gf128mul_dat(q) { \
	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
}

/*	Given the value i in 0..255 as the byte overflow when a field element
    in GHASH is multipled by x^8, this function will return the values that
    are generated in the lo 16-bit word of the field value by applying the
    modular polynomial. The values lo_byte and hi_byte are returned via the
    macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into
    memory as required by a suitable definition of this macro operating on
    the table above
*/

#define xx(p, q)	0x##p##q

#define xda_bbe(i) ( \
	(i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \
	(i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \
	(i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \
	(i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \
)

#define xda_lle(i) ( \
	(i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \
	(i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \
	(i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \
	(i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \
)

static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle);
static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe);

/* These functions multiply a field element by x, by x^4 and by x^8
 * in the polynomial field representation. It uses 32-bit word operations
 * to gain speed but compensates for machine endianess and hence works
 * correctly on both styles of machine.
 */

static void gf128mul_x_lle(be128 *r, const be128 *x)
{
	u64 a = be64_to_cpu(x->a);
	u64 b = be64_to_cpu(x->b);
	u64 _tt = gf128mul_table_lle[(b << 7) & 0xff];

	r->b = cpu_to_be64((b >> 1) | (a << 63));
	r->a = cpu_to_be64((a >> 1) ^ (_tt << 48));
}

static void gf128mul_x_bbe(be128 *r, const be128 *x)
{
	u64 a = be64_to_cpu(x->a);
	u64 b = be64_to_cpu(x->b);
	u64 _tt = gf128mul_table_bbe[a >> 63];

	r->a = cpu_to_be64((a << 1) | (b >> 63));
	r->b = cpu_to_be64((b << 1) ^ _tt);
}

void gf128mul_x_ble(be128 *r, const be128 *x)
{
	u64 a = le64_to_cpu(x->a);
	u64 b = le64_to_cpu(x->b);
	u64 _tt = gf128mul_table_bbe[b >> 63];

	r->a = cpu_to_le64((a << 1) ^ _tt);
	r->b = cpu_to_le64((b << 1) | (a >> 63));
}
EXPORT_SYMBOL(gf128mul_x_ble);

static void gf128mul_x8_lle(be128 *x)
{
	u64 a = be64_to_cpu(x->a);
	u64 b = be64_to_cpu(x->b);
	u64 _tt = gf128mul_table_lle[b & 0xff];

	x->b = cpu_to_be64((b >> 8) | (a << 56));
	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
}

static void gf128mul_x8_bbe(be128 *x)
{
	u64 a = be64_to_cpu(x->a);
	u64 b = be64_to_cpu(x->b);
	u64 _tt = gf128mul_table_bbe[a >> 56];

	x->a = cpu_to_be64((a << 8) | (b >> 56));
	x->b = cpu_to_be64((b << 8) ^ _tt);
}

void gf128mul_lle(be128 *r, const be128 *b)
{
	be128 p[8];
	int i;

	p[0] = *r;
	for (i = 0; i < 7; ++i)
		gf128mul_x_lle(&p[i + 1], &p[i]);

	memset(r, 0, sizeof(r));
	for (i = 0;;) {
		u8 ch = ((u8 *)b)[15 - i];

		if (ch & 0x80)
			be128_xor(r, r, &p[0]);
		if (ch & 0x40)
			be128_xor(r, r, &p[1]);
		if (ch & 0x20)
			be128_xor(r, r, &p[2]);
		if (ch & 0x10)
			be128_xor(r, r, &p[3]);
		if (ch & 0x08)
			be128_xor(r, r, &p[4]);
		if (ch & 0x04)
			be128_xor(r, r, &p[5]);
		if (ch & 0x02)
			be128_xor(r, r, &p[6]);
		if (ch & 0x01)
			be128_xor(r, r, &p[7]);

		if (++i >= 16)
			break;

		gf128mul_x8_lle(r);
	}
}
EXPORT_SYMBOL(gf128mul_lle);

void gf128mul_bbe(be128 *r, const be128 *b)
{
	be128 p[8];
	int i;

	p[0] = *r;
	for (i = 0; i < 7; ++i)
		gf128mul_x_bbe(&p[i + 1], &p[i]);

	memset(r, 0, sizeof(r));
	for (i = 0;;) {
		u8 ch = ((u8 *)b)[i];

		if (ch & 0x80)
			be128_xor(r, r, &p[7]);
		if (ch & 0x40)
			be128_xor(r, r, &p[6]);
		if (ch & 0x20)
			be128_xor(r, r, &p[5]);
		if (ch & 0x10)
			be128_xor(r, r, &p[4]);
		if (ch & 0x08)
			be128_xor(r, r, &p[3]);
		if (ch & 0x04)
			be128_xor(r, r, &p[2]);
		if (ch & 0x02)
			be128_xor(r, r, &p[1]);
		if (ch & 0x01)
			be128_xor(r, r, &p[0]);

		if (++i >= 16)
			break;

		gf128mul_x8_bbe(r);
	}
}
EXPORT_SYMBOL(gf128mul_bbe);

/*      This version uses 64k bytes of table space.
    A 16 byte buffer has to be multiplied by a 16 byte key
    value in GF(128).  If we consider a GF(128) value in
    the buffer's lowest byte, we can construct a table of
    the 256 16 byte values that result from the 256 values
    of this byte.  This requires 4096 bytes. But we also
    need tables for each of the 16 higher bytes in the
    buffer as well, which makes 64 kbytes in total.
*/
/* additional explanation
 * t[0][BYTE] contains g*BYTE
 * t[1][BYTE] contains g*x^8*BYTE
 *  ..
 * t[15][BYTE] contains g*x^120*BYTE */
struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g)
{
	struct gf128mul_64k *t;
	int i, j, k;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		goto out;

	for (i = 0; i < 16; i++) {
		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
		if (!t->t[i]) {
			gf128mul_free_64k(t);
			t = NULL;
			goto out;
		}
	}

	t->t[0]->t[128] = *g;
	for (j = 64; j > 0; j >>= 1)
		gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]);

	for (i = 0;;) {
		for (j = 2; j < 256; j += j)
			for (k = 1; k < j; ++k)
				be128_xor(&t->t[i]->t[j + k],
					  &t->t[i]->t[j], &t->t[i]->t[k]);

		if (++i >= 16)
			break;

		for (j = 128; j > 0; j >>= 1) {
			t->t[i]->t[j] = t->t[i - 1]->t[j];
			gf128mul_x8_lle(&t->t[i]->t[j]);
		}
	}

out:
	return t;
}
EXPORT_SYMBOL(gf128mul_init_64k_lle);

struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
{
	struct gf128mul_64k *t;
	int i, j, k;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		goto out;

	for (i = 0; i < 16; i++) {
		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
		if (!t->t[i]) {
			gf128mul_free_64k(t);
			t = NULL;
			goto out;
		}
	}

	t->t[0]->t[1] = *g;
	for (j = 1; j <= 64; j <<= 1)
		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);

	for (i = 0;;) {
		for (j = 2; j < 256; j += j)
			for (k = 1; k < j; ++k)
				be128_xor(&t->t[i]->t[j + k],
					  &t->t[i]->t[j], &t->t[i]->t[k]);

		if (++i >= 16)
			break;

		for (j = 128; j > 0; j >>= 1) {
			t->t[i]->t[j] = t->t[i - 1]->t[j];
			gf128mul_x8_bbe(&t->t[i]->t[j]);
		}
	}

out:
	return t;
}
EXPORT_SYMBOL(gf128mul_init_64k_bbe);

void gf128mul_free_64k(struct gf128mul_64k *t)
{
	int i;

	for (i = 0; i < 16; i++)
		kfree(t->t[i]);
	kfree(t);
}
EXPORT_SYMBOL(gf128mul_free_64k);

void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t)
{
	u8 *ap = (u8 *)a;
	be128 r[1];
	int i;

	*r = t->t[0]->t[ap[0]];
	for (i = 1; i < 16; ++i)
		be128_xor(r, r, &t->t[i]->t[ap[i]]);
	*a = *r;
}
EXPORT_SYMBOL(gf128mul_64k_lle);

void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t)
{
	u8 *ap = (u8 *)a;
	be128 r[1];
	int i;

	*r = t->t[0]->t[ap[15]];
	for (i = 1; i < 16; ++i)
		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
	*a = *r;
}
EXPORT_SYMBOL(gf128mul_64k_bbe);

/*      This version uses 4k bytes of table space.
    A 16 byte buffer has to be multiplied by a 16 byte key
    value in GF(128).  If we consider a GF(128) value in a
    single byte, we can construct a table of the 256 16 byte
    values that result from the 256 values of this byte.
    This requires 4096 bytes. If we take the highest byte in
    the buffer and use this table to get the result, we then
    have to multiply by x^120 to get the final value. For the
    next highest byte the result has to be multiplied by x^112
    and so on. But we can do this by accumulating the result
    in an accumulator starting with the result for the top
    byte.  We repeatedly multiply the accumulator value by
    x^8 and then add in (i.e. xor) the 16 bytes of the next
    lower byte in the buffer, stopping when we reach the
    lowest byte. This requires a 4096 byte table.
*/
struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
{
	struct gf128mul_4k *t;
	int j, k;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		goto out;

	t->t[128] = *g;
	for (j = 64; j > 0; j >>= 1)
		gf128mul_x_lle(&t->t[j], &t->t[j+j]);

	for (j = 2; j < 256; j += j)
		for (k = 1; k < j; ++k)
			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);

out:
	return t;
}
EXPORT_SYMBOL(gf128mul_init_4k_lle);

struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
{
	struct gf128mul_4k *t;
	int j, k;

	t = kzalloc(sizeof(*t), GFP_KERNEL);
	if (!t)
		goto out;

	t->t[1] = *g;
	for (j = 1; j <= 64; j <<= 1)
		gf128mul_x_bbe(&t->t[j + j], &t->t[j]);

	for (j = 2; j < 256; j += j)
		for (k = 1; k < j; ++k)
			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);

out:
	return t;
}
EXPORT_SYMBOL(gf128mul_init_4k_bbe);

void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t)
{
	u8 *ap = (u8 *)a;
	be128 r[1];
	int i = 15;

	*r = t->t[ap[15]];
	while (i--) {
		gf128mul_x8_lle(r);
		be128_xor(r, r, &t->t[ap[i]]);
	}
	*a = *r;
}
EXPORT_SYMBOL(gf128mul_4k_lle);

void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t)
{
	u8 *ap = (u8 *)a;
	be128 r[1];
	int i = 0;

	*r = t->t[ap[0]];
	while (++i < 16) {
		gf128mul_x8_bbe(r);
		be128_xor(r, r, &t->t[ap[i]]);
	}
	*a = *r;
}
EXPORT_SYMBOL(gf128mul_4k_bbe);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
back to top