Staging
v0.5.1
Revision a6dbf8814f433a7fbfa9cde6333c98019f6db1e4 authored by Junio C Hamano on 13 September 2009, 20:38:48 UTC, committed by Junio C Hamano on 23 September 2009, 05:26:27 UTC
When the remote branch we asked for merging did not exist in the set of
fetched refs, we unconditionally hinted that it was because of lack of
configuration.  It is not necessarily so, and risks sending users for a
wild goose chase.

Make sure to check if that is indeed the case before telling a wild guess
to the user.

Signed-off-by: Junio C Hamano <gitster@pobox.com>
1 parent 3ddcb19
Raw File
cache-tree.c
#include "cache.h"
#include "tree.h"
#include "tree-walk.h"
#include "cache-tree.h"

#ifndef DEBUG
#define DEBUG 0
#endif

struct cache_tree *cache_tree(void)
{
	struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
	it->entry_count = -1;
	return it;
}

void cache_tree_free(struct cache_tree **it_p)
{
	int i;
	struct cache_tree *it = *it_p;

	if (!it)
		return;
	for (i = 0; i < it->subtree_nr; i++)
		if (it->down[i])
			cache_tree_free(&it->down[i]->cache_tree);
	free(it->down);
	free(it);
	*it_p = NULL;
}

static int subtree_name_cmp(const char *one, int onelen,
			    const char *two, int twolen)
{
	if (onelen < twolen)
		return -1;
	if (twolen < onelen)
		return 1;
	return memcmp(one, two, onelen);
}

static int subtree_pos(struct cache_tree *it, const char *path, int pathlen)
{
	struct cache_tree_sub **down = it->down;
	int lo, hi;
	lo = 0;
	hi = it->subtree_nr;
	while (lo < hi) {
		int mi = (lo + hi) / 2;
		struct cache_tree_sub *mdl = down[mi];
		int cmp = subtree_name_cmp(path, pathlen,
					   mdl->name, mdl->namelen);
		if (!cmp)
			return mi;
		if (cmp < 0)
			hi = mi;
		else
			lo = mi + 1;
	}
	return -lo-1;
}

static struct cache_tree_sub *find_subtree(struct cache_tree *it,
					   const char *path,
					   int pathlen,
					   int create)
{
	struct cache_tree_sub *down;
	int pos = subtree_pos(it, path, pathlen);
	if (0 <= pos)
		return it->down[pos];
	if (!create)
		return NULL;

	pos = -pos-1;
	if (it->subtree_alloc <= it->subtree_nr) {
		it->subtree_alloc = alloc_nr(it->subtree_alloc);
		it->down = xrealloc(it->down, it->subtree_alloc *
				    sizeof(*it->down));
	}
	it->subtree_nr++;

	down = xmalloc(sizeof(*down) + pathlen + 1);
	down->cache_tree = NULL;
	down->namelen = pathlen;
	memcpy(down->name, path, pathlen);
	down->name[pathlen] = 0;

	if (pos < it->subtree_nr)
		memmove(it->down + pos + 1,
			it->down + pos,
			sizeof(down) * (it->subtree_nr - pos - 1));
	it->down[pos] = down;
	return down;
}

struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
{
	int pathlen = strlen(path);
	return find_subtree(it, path, pathlen, 1);
}

void cache_tree_invalidate_path(struct cache_tree *it, const char *path)
{
	/* a/b/c
	 * ==> invalidate self
	 * ==> find "a", have it invalidate "b/c"
	 * a
	 * ==> invalidate self
	 * ==> if "a" exists as a subtree, remove it.
	 */
	const char *slash;
	int namelen;
	struct cache_tree_sub *down;

#if DEBUG
	fprintf(stderr, "cache-tree invalidate <%s>\n", path);
#endif

	if (!it)
		return;
	slash = strchr(path, '/');
	it->entry_count = -1;
	if (!slash) {
		int pos;
		namelen = strlen(path);
		pos = subtree_pos(it, path, namelen);
		if (0 <= pos) {
			cache_tree_free(&it->down[pos]->cache_tree);
			free(it->down[pos]);
			/* 0 1 2 3 4 5
			 *       ^     ^subtree_nr = 6
			 *       pos
			 * move 4 and 5 up one place (2 entries)
			 * 2 = 6 - 3 - 1 = subtree_nr - pos - 1
			 */
			memmove(it->down+pos, it->down+pos+1,
				sizeof(struct cache_tree_sub *) *
				(it->subtree_nr - pos - 1));
			it->subtree_nr--;
		}
		return;
	}
	namelen = slash - path;
	down = find_subtree(it, path, namelen, 0);
	if (down)
		cache_tree_invalidate_path(down->cache_tree, slash + 1);
}

static int verify_cache(struct cache_entry **cache,
			int entries)
{
	int i, funny;

	/* Verify that the tree is merged */
	funny = 0;
	for (i = 0; i < entries; i++) {
		struct cache_entry *ce = cache[i];
		if (ce_stage(ce) || (ce->ce_flags & CE_INTENT_TO_ADD)) {
			if (10 < ++funny) {
				fprintf(stderr, "...\n");
				break;
			}
			if (ce_stage(ce))
				fprintf(stderr, "%s: unmerged (%s)\n",
					ce->name, sha1_to_hex(ce->sha1));
			else
				fprintf(stderr, "%s: not added yet\n",
					ce->name);
		}
	}
	if (funny)
		return -1;

	/* Also verify that the cache does not have path and path/file
	 * at the same time.  At this point we know the cache has only
	 * stage 0 entries.
	 */
	funny = 0;
	for (i = 0; i < entries - 1; i++) {
		/* path/file always comes after path because of the way
		 * the cache is sorted.  Also path can appear only once,
		 * which means conflicting one would immediately follow.
		 */
		const char *this_name = cache[i]->name;
		const char *next_name = cache[i+1]->name;
		int this_len = strlen(this_name);
		if (this_len < strlen(next_name) &&
		    strncmp(this_name, next_name, this_len) == 0 &&
		    next_name[this_len] == '/') {
			if (10 < ++funny) {
				fprintf(stderr, "...\n");
				break;
			}
			fprintf(stderr, "You have both %s and %s\n",
				this_name, next_name);
		}
	}
	if (funny)
		return -1;
	return 0;
}

static void discard_unused_subtrees(struct cache_tree *it)
{
	struct cache_tree_sub **down = it->down;
	int nr = it->subtree_nr;
	int dst, src;
	for (dst = src = 0; src < nr; src++) {
		struct cache_tree_sub *s = down[src];
		if (s->used)
			down[dst++] = s;
		else {
			cache_tree_free(&s->cache_tree);
			free(s);
			it->subtree_nr--;
		}
	}
}

int cache_tree_fully_valid(struct cache_tree *it)
{
	int i;
	if (!it)
		return 0;
	if (it->entry_count < 0 || !has_sha1_file(it->sha1))
		return 0;
	for (i = 0; i < it->subtree_nr; i++) {
		if (!cache_tree_fully_valid(it->down[i]->cache_tree))
			return 0;
	}
	return 1;
}

static int update_one(struct cache_tree *it,
		      struct cache_entry **cache,
		      int entries,
		      const char *base,
		      int baselen,
		      int missing_ok,
		      int dryrun)
{
	struct strbuf buffer;
	int i;

	if (0 <= it->entry_count && has_sha1_file(it->sha1))
		return it->entry_count;

	/*
	 * We first scan for subtrees and update them; we start by
	 * marking existing subtrees -- the ones that are unmarked
	 * should not be in the result.
	 */
	for (i = 0; i < it->subtree_nr; i++)
		it->down[i]->used = 0;

	/*
	 * Find the subtrees and update them.
	 */
	for (i = 0; i < entries; i++) {
		struct cache_entry *ce = cache[i];
		struct cache_tree_sub *sub;
		const char *path, *slash;
		int pathlen, sublen, subcnt;

		path = ce->name;
		pathlen = ce_namelen(ce);
		if (pathlen <= baselen || memcmp(base, path, baselen))
			break; /* at the end of this level */

		slash = strchr(path + baselen, '/');
		if (!slash)
			continue;
		/*
		 * a/bbb/c (base = a/, slash = /c)
		 * ==>
		 * path+baselen = bbb/c, sublen = 3
		 */
		sublen = slash - (path + baselen);
		sub = find_subtree(it, path + baselen, sublen, 1);
		if (!sub->cache_tree)
			sub->cache_tree = cache_tree();
		subcnt = update_one(sub->cache_tree,
				    cache + i, entries - i,
				    path,
				    baselen + sublen + 1,
				    missing_ok,
				    dryrun);
		if (subcnt < 0)
			return subcnt;
		i += subcnt - 1;
		sub->used = 1;
	}

	discard_unused_subtrees(it);

	/*
	 * Then write out the tree object for this level.
	 */
	strbuf_init(&buffer, 8192);

	for (i = 0; i < entries; i++) {
		struct cache_entry *ce = cache[i];
		struct cache_tree_sub *sub;
		const char *path, *slash;
		int pathlen, entlen;
		const unsigned char *sha1;
		unsigned mode;

		path = ce->name;
		pathlen = ce_namelen(ce);
		if (pathlen <= baselen || memcmp(base, path, baselen))
			break; /* at the end of this level */

		slash = strchr(path + baselen, '/');
		if (slash) {
			entlen = slash - (path + baselen);
			sub = find_subtree(it, path + baselen, entlen, 0);
			if (!sub)
				die("cache-tree.c: '%.*s' in '%s' not found",
				    entlen, path + baselen, path);
			i += sub->cache_tree->entry_count - 1;
			sha1 = sub->cache_tree->sha1;
			mode = S_IFDIR;
		}
		else {
			sha1 = ce->sha1;
			mode = ce->ce_mode;
			entlen = pathlen - baselen;
		}
		if (mode != S_IFGITLINK && !missing_ok && !has_sha1_file(sha1))
			return error("invalid object %06o %s for '%.*s'",
				mode, sha1_to_hex(sha1), entlen+baselen, path);

		if (ce->ce_flags & CE_REMOVE)
			continue; /* entry being removed */

		strbuf_grow(&buffer, entlen + 100);
		strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
		strbuf_add(&buffer, sha1, 20);

#if DEBUG
		fprintf(stderr, "cache-tree update-one %o %.*s\n",
			mode, entlen, path + baselen);
#endif
	}

	if (dryrun)
		hash_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1);
	else if (write_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1)) {
		strbuf_release(&buffer);
		return -1;
	}

	strbuf_release(&buffer);
	it->entry_count = i;
#if DEBUG
	fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
		it->entry_count, it->subtree_nr,
		sha1_to_hex(it->sha1));
#endif
	return i;
}

int cache_tree_update(struct cache_tree *it,
		      struct cache_entry **cache,
		      int entries,
		      int missing_ok,
		      int dryrun)
{
	int i;
	i = verify_cache(cache, entries);
	if (i)
		return i;
	i = update_one(it, cache, entries, "", 0, missing_ok, dryrun);
	if (i < 0)
		return i;
	return 0;
}

static void write_one(struct strbuf *buffer, struct cache_tree *it,
                      const char *path, int pathlen)
{
	int i;

	/* One "cache-tree" entry consists of the following:
	 * path (NUL terminated)
	 * entry_count, subtree_nr ("%d %d\n")
	 * tree-sha1 (missing if invalid)
	 * subtree_nr "cache-tree" entries for subtrees.
	 */
	strbuf_grow(buffer, pathlen + 100);
	strbuf_add(buffer, path, pathlen);
	strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);

#if DEBUG
	if (0 <= it->entry_count)
		fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
			pathlen, path, it->entry_count, it->subtree_nr,
			sha1_to_hex(it->sha1));
	else
		fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
			pathlen, path, it->subtree_nr);
#endif

	if (0 <= it->entry_count) {
		strbuf_add(buffer, it->sha1, 20);
	}
	for (i = 0; i < it->subtree_nr; i++) {
		struct cache_tree_sub *down = it->down[i];
		if (i) {
			struct cache_tree_sub *prev = it->down[i-1];
			if (subtree_name_cmp(down->name, down->namelen,
					     prev->name, prev->namelen) <= 0)
				die("fatal - unsorted cache subtree");
		}
		write_one(buffer, down->cache_tree, down->name, down->namelen);
	}
}

void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
{
	write_one(sb, root, "", 0);
}

static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
{
	const char *buf = *buffer;
	unsigned long size = *size_p;
	const char *cp;
	char *ep;
	struct cache_tree *it;
	int i, subtree_nr;

	it = NULL;
	/* skip name, but make sure name exists */
	while (size && *buf) {
		size--;
		buf++;
	}
	if (!size)
		goto free_return;
	buf++; size--;
	it = cache_tree();

	cp = buf;
	it->entry_count = strtol(cp, &ep, 10);
	if (cp == ep)
		goto free_return;
	cp = ep;
	subtree_nr = strtol(cp, &ep, 10);
	if (cp == ep)
		goto free_return;
	while (size && *buf && *buf != '\n') {
		size--;
		buf++;
	}
	if (!size)
		goto free_return;
	buf++; size--;
	if (0 <= it->entry_count) {
		if (size < 20)
			goto free_return;
		hashcpy(it->sha1, (const unsigned char*)buf);
		buf += 20;
		size -= 20;
	}

#if DEBUG
	if (0 <= it->entry_count)
		fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
			*buffer, it->entry_count, subtree_nr,
			sha1_to_hex(it->sha1));
	else
		fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
			*buffer, subtree_nr);
#endif

	/*
	 * Just a heuristic -- we do not add directories that often but
	 * we do not want to have to extend it immediately when we do,
	 * hence +2.
	 */
	it->subtree_alloc = subtree_nr + 2;
	it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
	for (i = 0; i < subtree_nr; i++) {
		/* read each subtree */
		struct cache_tree *sub;
		struct cache_tree_sub *subtree;
		const char *name = buf;

		sub = read_one(&buf, &size);
		if (!sub)
			goto free_return;
		subtree = cache_tree_sub(it, name);
		subtree->cache_tree = sub;
	}
	if (subtree_nr != it->subtree_nr)
		die("cache-tree: internal error");
	*buffer = buf;
	*size_p = size;
	return it;

 free_return:
	cache_tree_free(&it);
	return NULL;
}

struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
{
	if (buffer[0])
		return NULL; /* not the whole tree */
	return read_one(&buffer, &size);
}

static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
{
	if (!it)
		return NULL;
	while (*path) {
		const char *slash;
		struct cache_tree_sub *sub;

		slash = strchr(path, '/');
		if (!slash)
			slash = path + strlen(path);
		/* between path and slash is the name of the
		 * subtree to look for.
		 */
		sub = find_subtree(it, path, slash - path, 0);
		if (!sub)
			return NULL;
		it = sub->cache_tree;
		if (slash)
			while (*slash && *slash == '/')
				slash++;
		if (!slash || !*slash)
			return it; /* prefix ended with slashes */
		path = slash;
	}
	return it;
}

int write_cache_as_tree(unsigned char *sha1, int flags, const char *prefix)
{
	int entries, was_valid, newfd;
	struct lock_file *lock_file;

	/*
	 * We can't free this memory, it becomes part of a linked list
	 * parsed atexit()
	 */
	lock_file = xcalloc(1, sizeof(struct lock_file));

	newfd = hold_locked_index(lock_file, 1);

	entries = read_cache();
	if (entries < 0)
		return WRITE_TREE_UNREADABLE_INDEX;
	if (flags & WRITE_TREE_IGNORE_CACHE_TREE)
		cache_tree_free(&(active_cache_tree));

	if (!active_cache_tree)
		active_cache_tree = cache_tree();

	was_valid = cache_tree_fully_valid(active_cache_tree);
	if (!was_valid) {
		int missing_ok = flags & WRITE_TREE_MISSING_OK;

		if (cache_tree_update(active_cache_tree,
				      active_cache, active_nr,
				      missing_ok, 0) < 0)
			return WRITE_TREE_UNMERGED_INDEX;
		if (0 <= newfd) {
			if (!write_cache(newfd, active_cache, active_nr) &&
			    !commit_lock_file(lock_file))
				newfd = -1;
		}
		/* Not being able to write is fine -- we are only interested
		 * in updating the cache-tree part, and if the next caller
		 * ends up using the old index with unupdated cache-tree part
		 * it misses the work we did here, but that is just a
		 * performance penalty and not a big deal.
		 */
	}

	if (prefix) {
		struct cache_tree *subtree =
			cache_tree_find(active_cache_tree, prefix);
		if (!subtree)
			return WRITE_TREE_PREFIX_ERROR;
		hashcpy(sha1, subtree->sha1);
	}
	else
		hashcpy(sha1, active_cache_tree->sha1);

	if (0 <= newfd)
		rollback_lock_file(lock_file);

	return 0;
}

static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree)
{
	struct tree_desc desc;
	struct name_entry entry;
	int cnt;

	hashcpy(it->sha1, tree->object.sha1);
	init_tree_desc(&desc, tree->buffer, tree->size);
	cnt = 0;
	while (tree_entry(&desc, &entry)) {
		if (!S_ISDIR(entry.mode))
			cnt++;
		else {
			struct cache_tree_sub *sub;
			struct tree *subtree = lookup_tree(entry.sha1);
			if (!subtree->object.parsed)
				parse_tree(subtree);
			sub = cache_tree_sub(it, entry.path);
			sub->cache_tree = cache_tree();
			prime_cache_tree_rec(sub->cache_tree, subtree);
			cnt += sub->cache_tree->entry_count;
		}
	}
	it->entry_count = cnt;
}

void prime_cache_tree(struct cache_tree **it, struct tree *tree)
{
	cache_tree_free(it);
	*it = cache_tree();
	prime_cache_tree_rec(*it, tree);
}

/*
 * find the cache_tree that corresponds to the current level without
 * exploding the full path into textual form.  The root of the
 * cache tree is given as "root", and our current level is "info".
 * (1) When at root level, info->prev is NULL, so it is "root" itself.
 * (2) Otherwise, find the cache_tree that corresponds to one level
 *     above us, and find ourselves in there.
 */
static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
							 struct traverse_info *info)
{
	struct cache_tree *our_parent;

	if (!info->prev)
		return root;
	our_parent = find_cache_tree_from_traversal(root, info->prev);
	return cache_tree_find(our_parent, info->name.path);
}

int cache_tree_matches_traversal(struct cache_tree *root,
				 struct name_entry *ent,
				 struct traverse_info *info)
{
	struct cache_tree *it;

	it = find_cache_tree_from_traversal(root, info);
	it = cache_tree_find(it, ent->path);
	if (it && it->entry_count > 0 && !hashcmp(ent->sha1, it->sha1))
		return it->entry_count;
	return 0;
}
back to top