Staging
v0.5.1
https://github.com/python/cpython
Revision 80288f4f85b97de15ee78628869aef28639526bb authored by Neal Norwitz on 29 March 2003, 22:25:18 UTC, committed by Neal Norwitz on 29 March 2003, 22:25:18 UTC
Check for readline 2.2 features.  This should make it possible to
compile readline.c again with GNU readline versions 2.0 or 2.1; this
ability was removed in readline.c rev. 2.49.  Apparently the older
versions are still in widespread deployment on older Solaris
installations.  With an older readline, completion behavior is subtly
different (a space is always added).
1 parent a43f281
Raw File
Tip revision: 80288f4f85b97de15ee78628869aef28639526bb authored by Neal Norwitz on 29 March 2003, 22:25:18 UTC
Backport Patch 659834 checked in by GvR on 2002/12/30 16:25:38
Tip revision: 80288f4
thread_pthread.h

/* Posix threads interface */

#include <stdlib.h>
#include <string.h>
#if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR)
#define destructor xxdestructor
#endif
#include <pthread.h>
#if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR)
#undef destructor
#endif
#include <signal.h>


/* try to determine what version of the Pthread Standard is installed.
 * this is important, since all sorts of parameter types changed from
 * draft to draft and there are several (incompatible) drafts in
 * common use.  these macros are a start, at least. 
 * 12 May 1997 -- david arnold <davida@pobox.com>
 */

#if defined(__ultrix) && defined(__mips) && defined(_DECTHREADS_)
/* _DECTHREADS_ is defined in cma.h which is included by pthread.h */
#  define PY_PTHREAD_D4

#elif defined(__osf__) && defined (__alpha)
/* _DECTHREADS_ is defined in cma.h which is included by pthread.h */
#  if !defined(_PTHREAD_ENV_ALPHA) || defined(_PTHREAD_USE_D4) || defined(PTHREAD_USE_D4)
#    define PY_PTHREAD_D4
#  else
#    define PY_PTHREAD_STD
#  endif

#elif defined(_AIX)
/* SCHED_BG_NP is defined if using AIX DCE pthreads
 * but it is unsupported by AIX 4 pthreads. Default
 * attributes for AIX 4 pthreads equal to NULL. For
 * AIX DCE pthreads they should be left unchanged.
 */
#  if !defined(SCHED_BG_NP)
#    define PY_PTHREAD_STD
#  else
#    define PY_PTHREAD_D7
#  endif

#elif defined(__DGUX)
#  define PY_PTHREAD_D6

#elif defined(__hpux) && defined(_DECTHREADS_)
#  define PY_PTHREAD_D4

#else /* Default case */
#  define PY_PTHREAD_STD

#endif

#ifdef USE_GUSI
/* The Macintosh GUSI I/O library sets the stackspace to
** 20KB, much too low. We up it to 64K.
*/
#define THREAD_STACK_SIZE 0x10000
#endif


/* set default attribute object for different versions */

#if defined(PY_PTHREAD_D4) || defined(PY_PTHREAD_D7)
#  define pthread_attr_default pthread_attr_default
#  define pthread_mutexattr_default pthread_mutexattr_default
#  define pthread_condattr_default pthread_condattr_default
#elif defined(PY_PTHREAD_STD) || defined(PY_PTHREAD_D6)
#  define pthread_attr_default ((pthread_attr_t *)NULL)
#  define pthread_mutexattr_default ((pthread_mutexattr_t *)NULL)
#  define pthread_condattr_default ((pthread_condattr_t *)NULL)
#endif


/* On platforms that don't use standard POSIX threads pthread_sigmask()
 * isn't present.  DEC threads uses sigprocmask() instead as do most
 * other UNIX International compliant systems that don't have the full
 * pthread implementation.
 */
#ifdef HAVE_PTHREAD_SIGMASK
#  define SET_THREAD_SIGMASK pthread_sigmask
#else
#  define SET_THREAD_SIGMASK sigprocmask
#endif


/* A pthread mutex isn't sufficient to model the Python lock type
 * because, according to Draft 5 of the docs (P1003.4a/D5), both of the
 * following are undefined:
 *  -> a thread tries to lock a mutex it already has locked
 *  -> a thread tries to unlock a mutex locked by a different thread
 * pthread mutexes are designed for serializing threads over short pieces
 * of code anyway, so wouldn't be an appropriate implementation of
 * Python's locks regardless.
 *
 * The pthread_lock struct implements a Python lock as a "locked?" bit
 * and a <condition, mutex> pair.  In general, if the bit can be acquired
 * instantly, it is, else the pair is used to block the thread until the
 * bit is cleared.     9 May 1994 tim@ksr.com
 */

typedef struct {
	char             locked; /* 0=unlocked, 1=locked */
	/* a <cond, mutex> pair to handle an acquire of a locked lock */
	pthread_cond_t   lock_released;
	pthread_mutex_t  mut;
} pthread_lock;

#define CHECK_STATUS(name)  if (status != 0) { perror(name); error = 1; }

/*
 * Initialization.
 */

#ifdef _HAVE_BSDI
static
void _noop(void)
{
}

static void
PyThread__init_thread(void)
{
	/* DO AN INIT BY STARTING THE THREAD */
	static int dummy = 0;
	pthread_t thread1;
	pthread_create(&thread1, NULL, (void *) _noop, &dummy);
	pthread_join(thread1, NULL);
}

#else /* !_HAVE_BSDI */

static void
PyThread__init_thread(void)
{
#if defined(_AIX) && defined(__GNUC__)
	pthread_init();
#endif
}

#endif /* !_HAVE_BSDI */

/*
 * Thread support.
 */


long
PyThread_start_new_thread(void (*func)(void *), void *arg)
{
	pthread_t th;
	int success;
 	sigset_t oldmask, newmask;
#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
	pthread_attr_t attrs;
#endif
	dprintf(("PyThread_start_new_thread called\n"));
	if (!initialized)
		PyThread_init_thread();

#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
	pthread_attr_init(&attrs);
#endif
#ifdef THREAD_STACK_SIZE
	pthread_attr_setstacksize(&attrs, THREAD_STACK_SIZE);
#endif
#ifdef PTHREAD_SYSTEM_SCHED_SUPPORTED
        pthread_attr_setscope(&attrs, PTHREAD_SCOPE_SYSTEM);
#endif

	/* Mask all signals in the current thread before creating the new
	 * thread.  This causes the new thread to start with all signals
	 * blocked.
	 */
	sigfillset(&newmask);
	SET_THREAD_SIGMASK(SIG_BLOCK, &newmask, &oldmask);

	success = pthread_create(&th, 
#if defined(PY_PTHREAD_D4)
				 pthread_attr_default,
				 (pthread_startroutine_t)func, 
				 (pthread_addr_t)arg
#elif defined(PY_PTHREAD_D6)
				 pthread_attr_default,
				 (void* (*)(void *))func,
				 arg
#elif defined(PY_PTHREAD_D7)
				 pthread_attr_default,
				 func,
				 arg
#elif defined(PY_PTHREAD_STD)
#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
				 &attrs,
#else
				 (pthread_attr_t*)NULL,
#endif
				 (void* (*)(void *))func,
				 (void *)arg
#endif
				 );

	/* Restore signal mask for original thread */
	SET_THREAD_SIGMASK(SIG_SETMASK, &oldmask, NULL);

#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED)
	pthread_attr_destroy(&attrs);
#endif
	if (success == 0) {
#if defined(PY_PTHREAD_D4) || defined(PY_PTHREAD_D6) || defined(PY_PTHREAD_D7)
		pthread_detach(&th);
#elif defined(PY_PTHREAD_STD)
		pthread_detach(th);
#endif
	}
#if SIZEOF_PTHREAD_T <= SIZEOF_LONG
	return (long) th;
#else
	return (long) *(long *) &th;
#endif
}

/* XXX This implementation is considered (to quote Tim Peters) "inherently
   hosed" because:
     - It does not guanrantee the promise that a non-zero integer is returned.
     - The cast to long is inherently unsafe.
     - It is not clear that the 'volatile' (for AIX?) and ugly casting in the
       latter return statement (for Alpha OSF/1) are any longer necessary.
*/
long 
PyThread_get_thread_ident(void)
{
	volatile pthread_t threadid;
	if (!initialized)
		PyThread_init_thread();
	/* Jump through some hoops for Alpha OSF/1 */
	threadid = pthread_self();
#if SIZEOF_PTHREAD_T <= SIZEOF_LONG
	return (long) threadid;
#else
	return (long) *(long *) &threadid;
#endif
}

static void 
do_PyThread_exit_thread(int no_cleanup)
{
	dprintf(("PyThread_exit_thread called\n"));
	if (!initialized) {
		if (no_cleanup)
			_exit(0);
		else
			exit(0);
	}
}

void 
PyThread_exit_thread(void)
{
	do_PyThread_exit_thread(0);
}

void 
PyThread__exit_thread(void)
{
	do_PyThread_exit_thread(1);
}

#ifndef NO_EXIT_PROG
static void 
do_PyThread_exit_prog(int status, int no_cleanup)
{
	dprintf(("PyThread_exit_prog(%d) called\n", status));
	if (!initialized)
		if (no_cleanup)
			_exit(status);
		else
			exit(status);
}

void 
PyThread_exit_prog(int status)
{
	do_PyThread_exit_prog(status, 0);
}

void 
PyThread__exit_prog(int status)
{
	do_PyThread_exit_prog(status, 1);
}
#endif /* NO_EXIT_PROG */

/*
 * Lock support.
 */
PyThread_type_lock 
PyThread_allocate_lock(void)
{
	pthread_lock *lock;
	int status, error = 0;

	dprintf(("PyThread_allocate_lock called\n"));
	if (!initialized)
		PyThread_init_thread();

	lock = (pthread_lock *) malloc(sizeof(pthread_lock));
	memset((void *)lock, '\0', sizeof(pthread_lock));
	if (lock) {
		lock->locked = 0;

		status = pthread_mutex_init(&lock->mut,
					    pthread_mutexattr_default);
		CHECK_STATUS("pthread_mutex_init");

		status = pthread_cond_init(&lock->lock_released,
					   pthread_condattr_default);
		CHECK_STATUS("pthread_cond_init");

		if (error) {
			free((void *)lock);
			lock = 0;
		}
	}

	dprintf(("PyThread_allocate_lock() -> %p\n", lock));
	return (PyThread_type_lock) lock;
}

void 
PyThread_free_lock(PyThread_type_lock lock)
{
	pthread_lock *thelock = (pthread_lock *)lock;
	int status, error = 0;

	dprintf(("PyThread_free_lock(%p) called\n", lock));

	status = pthread_mutex_destroy( &thelock->mut );
	CHECK_STATUS("pthread_mutex_destroy");

	status = pthread_cond_destroy( &thelock->lock_released );
	CHECK_STATUS("pthread_cond_destroy");

	free((void *)thelock);
}

int 
PyThread_acquire_lock(PyThread_type_lock lock, int waitflag)
{
	int success;
	pthread_lock *thelock = (pthread_lock *)lock;
	int status, error = 0;

	dprintf(("PyThread_acquire_lock(%p, %d) called\n", lock, waitflag));

	status = pthread_mutex_lock( &thelock->mut );
	CHECK_STATUS("pthread_mutex_lock[1]");
	success = thelock->locked == 0;
	if (success) thelock->locked = 1;
	status = pthread_mutex_unlock( &thelock->mut );
	CHECK_STATUS("pthread_mutex_unlock[1]");

	if ( !success && waitflag ) {
		/* continue trying until we get the lock */

		/* mut must be locked by me -- part of the condition
		 * protocol */
		status = pthread_mutex_lock( &thelock->mut );
		CHECK_STATUS("pthread_mutex_lock[2]");
		while ( thelock->locked ) {
			status = pthread_cond_wait(&thelock->lock_released,
						   &thelock->mut);
			CHECK_STATUS("pthread_cond_wait");
		}
		thelock->locked = 1;
		status = pthread_mutex_unlock( &thelock->mut );
		CHECK_STATUS("pthread_mutex_unlock[2]");
		success = 1;
	}
	if (error) success = 0;
	dprintf(("PyThread_acquire_lock(%p, %d) -> %d\n", lock, waitflag, success));
	return success;
}

void 
PyThread_release_lock(PyThread_type_lock lock)
{
	pthread_lock *thelock = (pthread_lock *)lock;
	int status, error = 0;

	dprintf(("PyThread_release_lock(%p) called\n", lock));

	status = pthread_mutex_lock( &thelock->mut );
	CHECK_STATUS("pthread_mutex_lock[3]");

	thelock->locked = 0;

	status = pthread_mutex_unlock( &thelock->mut );
	CHECK_STATUS("pthread_mutex_unlock[3]");

	/* wake up someone (anyone, if any) waiting on the lock */
	status = pthread_cond_signal( &thelock->lock_released );
	CHECK_STATUS("pthread_cond_signal");
}

/*
 * Semaphore support.
 */

struct semaphore {
	pthread_mutex_t mutex;
	pthread_cond_t cond;
	int value;
};

PyThread_type_sema 
PyThread_allocate_sema(int value)
{
	struct semaphore *sema;
	int status, error = 0;

	dprintf(("PyThread_allocate_sema called\n"));
	if (!initialized)
		PyThread_init_thread();

	sema = (struct semaphore *) malloc(sizeof(struct semaphore));
	if (sema != NULL) {
		sema->value = value;
		status = pthread_mutex_init(&sema->mutex,
					    pthread_mutexattr_default);
		CHECK_STATUS("pthread_mutex_init");
		status = pthread_cond_init(&sema->cond,
					   pthread_condattr_default);
		CHECK_STATUS("pthread_cond_init");
		if (error) {
			free((void *) sema);
			sema = NULL;
		}
	}
	dprintf(("PyThread_allocate_sema() -> %p\n",  sema));
	return (PyThread_type_sema) sema;
}

void 
PyThread_free_sema(PyThread_type_sema sema)
{
	int status, error = 0;
	struct semaphore *thesema = (struct semaphore *) sema;

	dprintf(("PyThread_free_sema(%p) called\n",  sema));
	status = pthread_cond_destroy(&thesema->cond);
	CHECK_STATUS("pthread_cond_destroy");
	status = pthread_mutex_destroy(&thesema->mutex);
	CHECK_STATUS("pthread_mutex_destroy");
	free((void *) thesema);
}

int 
PyThread_down_sema(PyThread_type_sema sema, int waitflag)
{
	int status, error = 0, success;
	struct semaphore *thesema = (struct semaphore *) sema;

	dprintf(("PyThread_down_sema(%p, %d) called\n",  sema, waitflag));
	status = pthread_mutex_lock(&thesema->mutex);
	CHECK_STATUS("pthread_mutex_lock");
	if (waitflag) {
		while (!error && thesema->value <= 0) {
			status = pthread_cond_wait(&thesema->cond,
						   &thesema->mutex);
			CHECK_STATUS("pthread_cond_wait");
		}
	}
	if (error)
		success = 0;
	else if (thesema->value > 0) {
		thesema->value--;
		success = 1;
	}
	else
		success = 0;
	status = pthread_mutex_unlock(&thesema->mutex);
	CHECK_STATUS("pthread_mutex_unlock");
	dprintf(("PyThread_down_sema(%p) return\n",  sema));
	return success;
}

void 
PyThread_up_sema(PyThread_type_sema sema)
{
	int status, error = 0;
	struct semaphore *thesema = (struct semaphore *) sema;

	dprintf(("PyThread_up_sema(%p)\n",  sema));
	status = pthread_mutex_lock(&thesema->mutex);
	CHECK_STATUS("pthread_mutex_lock");
	thesema->value++;
	status = pthread_cond_signal(&thesema->cond);
	CHECK_STATUS("pthread_cond_signal");
	status = pthread_mutex_unlock(&thesema->mutex);
	CHECK_STATUS("pthread_mutex_unlock");
}
back to top