Staging
v0.5.1
https://github.com/python/cpython
Revision 6a5d3ff67644af42b1a781be2eacb2e82913441c authored by Gregory P. Smith on 15 May 2020, 21:26:00 UTC, committed by GitHub on 15 May 2020, 21:26:00 UTC
Clarify the zip built-in docstring.

This puts much simpler text up front along with an example.

As it was, the zip built-in docstring was technically correct.  But too
technical for the reader who shouldn't _need_ to know about `__next__` and
`StopIteration` as most people do not need to understand the internal
implementation details of the iterator protocol in their daily life.

This is a documentation only change, intended to be backported to 3.8; it is
only tangentially related to PEP-618 which might offer new behavior options
in the future.

Wording based a bit more on enumerate per Brandt's suggestion.

This gets rid of the legacy wording paragraph which seems too tied to
implementation details of the iterator protocol which isn't relevant here.

Co-authored-by: Brandt Bucher <brandtbucher@gmail.com>
1 parent 938717f
Raw File
Tip revision: 6a5d3ff67644af42b1a781be2eacb2e82913441c authored by Gregory P. Smith on 15 May 2020, 21:26:00 UTC
bpo-40636: Clarify the zip built-in docstring. (GH-20118)
Tip revision: 6a5d3ff
thread_nt.h
#include "pycore_interp.h"    // _PyInterpreterState.pythread_stacksize

/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
/* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
/* Eliminated some memory leaks, gsw@agere.com */

#include <windows.h>
#include <limits.h>
#ifdef HAVE_PROCESS_H
#include <process.h>
#endif

/* options */
#ifndef _PY_USE_CV_LOCKS
#define _PY_USE_CV_LOCKS 1     /* use locks based on cond vars */
#endif

/* Now, define a non-recursive mutex using either condition variables
 * and critical sections (fast) or using operating system mutexes
 * (slow)
 */

#if _PY_USE_CV_LOCKS

#include "condvar.h"

typedef struct _NRMUTEX
{
    PyMUTEX_T cs;
    PyCOND_T cv;
    int locked;
} NRMUTEX;
typedef NRMUTEX *PNRMUTEX;

PNRMUTEX
AllocNonRecursiveMutex()
{
    PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX));
    if (!m)
        return NULL;
    if (PyCOND_INIT(&m->cv))
        goto fail;
    if (PyMUTEX_INIT(&m->cs)) {
        PyCOND_FINI(&m->cv);
        goto fail;
    }
    m->locked = 0;
    return m;
fail:
    PyMem_RawFree(m);
    return NULL;
}

VOID
FreeNonRecursiveMutex(PNRMUTEX mutex)
{
    if (mutex) {
        PyCOND_FINI(&mutex->cv);
        PyMUTEX_FINI(&mutex->cs);
        PyMem_RawFree(mutex);
    }
}

DWORD
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
{
    DWORD result = WAIT_OBJECT_0;
    if (PyMUTEX_LOCK(&mutex->cs))
        return WAIT_FAILED;
    if (milliseconds == INFINITE) {
        while (mutex->locked) {
            if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
                result = WAIT_FAILED;
                break;
            }
        }
    } else if (milliseconds != 0) {
        /* wait at least until the target */
        ULONGLONG now, target = GetTickCount64() + milliseconds;
        while (mutex->locked) {
            if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, (long long)milliseconds*1000) < 0) {
                result = WAIT_FAILED;
                break;
            }
            now = GetTickCount64();
            if (target <= now)
                break;
            milliseconds = (DWORD)(target-now);
        }
    }
    if (!mutex->locked) {
        mutex->locked = 1;
        result = WAIT_OBJECT_0;
    } else if (result == WAIT_OBJECT_0)
        result = WAIT_TIMEOUT;
    /* else, it is WAIT_FAILED */
    PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
    return result;
}

BOOL
LeaveNonRecursiveMutex(PNRMUTEX mutex)
{
    BOOL result;
    if (PyMUTEX_LOCK(&mutex->cs))
        return FALSE;
    mutex->locked = 0;
    /* condvar APIs return 0 on success. We need to return TRUE on success. */
    result = !PyCOND_SIGNAL(&mutex->cv);
    PyMUTEX_UNLOCK(&mutex->cs);
    return result;
}

#else /* if ! _PY_USE_CV_LOCKS */

/* NR-locks based on a kernel mutex */
#define PNRMUTEX HANDLE

PNRMUTEX
AllocNonRecursiveMutex()
{
    return CreateSemaphore(NULL, 1, 1, NULL);
}

VOID
FreeNonRecursiveMutex(PNRMUTEX mutex)
{
    /* No in-use check */
    CloseHandle(mutex);
}

DWORD
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
{
    return WaitForSingleObjectEx(mutex, milliseconds, FALSE);
}

BOOL
LeaveNonRecursiveMutex(PNRMUTEX mutex)
{
    return ReleaseSemaphore(mutex, 1, NULL);
}
#endif /* _PY_USE_CV_LOCKS */

unsigned long PyThread_get_thread_ident(void);

#ifdef PY_HAVE_THREAD_NATIVE_ID
unsigned long PyThread_get_thread_native_id(void);
#endif

/*
 * Initialization of the C package, should not be needed.
 */
static void
PyThread__init_thread(void)
{
}

/*
 * Thread support.
 */

typedef struct {
    void (*func)(void*);
    void *arg;
} callobj;

/* thunker to call adapt between the function type used by the system's
thread start function and the internally used one. */
static unsigned __stdcall
bootstrap(void *call)
{
    callobj *obj = (callobj*)call;
    void (*func)(void*) = obj->func;
    void *arg = obj->arg;
    HeapFree(GetProcessHeap(), 0, obj);
    func(arg);
    return 0;
}

unsigned long
PyThread_start_new_thread(void (*func)(void *), void *arg)
{
    HANDLE hThread;
    unsigned threadID;
    callobj *obj;

    dprintf(("%lu: PyThread_start_new_thread called\n",
             PyThread_get_thread_ident()));
    if (!initialized)
        PyThread_init_thread();

    obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj));
    if (!obj)
        return PYTHREAD_INVALID_THREAD_ID;
    obj->func = func;
    obj->arg = arg;
    PyThreadState *tstate = _PyThreadState_GET();
    size_t stacksize = tstate ? tstate->interp->pythread_stacksize : 0;
    hThread = (HANDLE)_beginthreadex(0,
                      Py_SAFE_DOWNCAST(stacksize, Py_ssize_t, unsigned int),
                      bootstrap, obj,
                      0, &threadID);
    if (hThread == 0) {
        /* I've seen errno == EAGAIN here, which means "there are
         * too many threads".
         */
        int e = errno;
        dprintf(("%lu: PyThread_start_new_thread failed, errno %d\n",
                 PyThread_get_thread_ident(), e));
        threadID = (unsigned)-1;
        HeapFree(GetProcessHeap(), 0, obj);
    }
    else {
        dprintf(("%lu: PyThread_start_new_thread succeeded: %p\n",
                 PyThread_get_thread_ident(), (void*)hThread));
        CloseHandle(hThread);
    }
    return threadID;
}

/*
 * Return the thread Id instead of a handle. The Id is said to uniquely identify the
 * thread in the system
 */
unsigned long
PyThread_get_thread_ident(void)
{
    if (!initialized)
        PyThread_init_thread();

    return GetCurrentThreadId();
}

#ifdef PY_HAVE_THREAD_NATIVE_ID
/*
 * Return the native Thread ID (TID) of the calling thread.
 * The native ID of a thread is valid and guaranteed to be unique system-wide
 * from the time the thread is created until the thread has been terminated.
 */
unsigned long
PyThread_get_thread_native_id(void)
{
    if (!initialized) {
        PyThread_init_thread();
    }

    DWORD native_id;
    native_id = GetCurrentThreadId();
    return (unsigned long) native_id;
}
#endif

void _Py_NO_RETURN
PyThread_exit_thread(void)
{
    dprintf(("%lu: PyThread_exit_thread called\n", PyThread_get_thread_ident()));
    if (!initialized)
        exit(0);
    _endthreadex(0);
}

/*
 * Lock support. It has to be implemented as semaphores.
 * I [Dag] tried to implement it with mutex but I could find a way to
 * tell whether a thread already own the lock or not.
 */
PyThread_type_lock
PyThread_allocate_lock(void)
{
    PNRMUTEX aLock;

    dprintf(("PyThread_allocate_lock called\n"));
    if (!initialized)
        PyThread_init_thread();

    aLock = AllocNonRecursiveMutex() ;

    dprintf(("%lu: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock));

    return (PyThread_type_lock) aLock;
}

void
PyThread_free_lock(PyThread_type_lock aLock)
{
    dprintf(("%lu: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock));

    FreeNonRecursiveMutex(aLock) ;
}

/*
 * Return 1 on success if the lock was acquired
 *
 * and 0 if the lock was not acquired. This means a 0 is returned
 * if the lock has already been acquired by this thread!
 */
PyLockStatus
PyThread_acquire_lock_timed(PyThread_type_lock aLock,
                            PY_TIMEOUT_T microseconds, int intr_flag)
{
    /* Fow now, intr_flag does nothing on Windows, and lock acquires are
     * uninterruptible.  */
    PyLockStatus success;
    PY_TIMEOUT_T milliseconds;

    if (microseconds >= 0) {
        milliseconds = microseconds / 1000;
        if (microseconds % 1000 > 0)
            ++milliseconds;
        if (milliseconds > PY_DWORD_MAX) {
            Py_FatalError("Timeout larger than PY_TIMEOUT_MAX");
        }
    }
    else {
        milliseconds = INFINITE;
    }

    dprintf(("%lu: PyThread_acquire_lock_timed(%p, %lld) called\n",
             PyThread_get_thread_ident(), aLock, microseconds));

    if (aLock && EnterNonRecursiveMutex((PNRMUTEX)aLock,
                                        (DWORD)milliseconds) == WAIT_OBJECT_0) {
        success = PY_LOCK_ACQUIRED;
    }
    else {
        success = PY_LOCK_FAILURE;
    }

    dprintf(("%lu: PyThread_acquire_lock(%p, %lld) -> %d\n",
             PyThread_get_thread_ident(), aLock, microseconds, success));

    return success;
}
int
PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
{
    return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0);
}

void
PyThread_release_lock(PyThread_type_lock aLock)
{
    dprintf(("%lu: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock));

    if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock)))
        dprintf(("%lu: Could not PyThread_release_lock(%p) error: %ld\n", PyThread_get_thread_ident(), aLock, GetLastError()));
}

/* minimum/maximum thread stack sizes supported */
#define THREAD_MIN_STACKSIZE    0x8000          /* 32 KiB */
#define THREAD_MAX_STACKSIZE    0x10000000      /* 256 MiB */

/* set the thread stack size.
 * Return 0 if size is valid, -1 otherwise.
 */
static int
_pythread_nt_set_stacksize(size_t size)
{
    /* set to default */
    if (size == 0) {
        _PyInterpreterState_GET()->pythread_stacksize = 0;
        return 0;
    }

    /* valid range? */
    if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) {
        _PyInterpreterState_GET()->pythread_stacksize = size;
        return 0;
    }

    return -1;
}

#define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x)


/* Thread Local Storage (TLS) API

   This API is DEPRECATED since Python 3.7.  See PEP 539 for details.
*/

int
PyThread_create_key(void)
{
    DWORD result = TlsAlloc();
    if (result == TLS_OUT_OF_INDEXES)
        return -1;
    return (int)result;
}

void
PyThread_delete_key(int key)
{
    TlsFree(key);
}

int
PyThread_set_key_value(int key, void *value)
{
    BOOL ok = TlsSetValue(key, value);
    return ok ? 0 : -1;
}

void *
PyThread_get_key_value(int key)
{
    /* because TLS is used in the Py_END_ALLOW_THREAD macro,
     * it is necessary to preserve the windows error state, because
     * it is assumed to be preserved across the call to the macro.
     * Ideally, the macro should be fixed, but it is simpler to
     * do it here.
     */
    DWORD error = GetLastError();
    void *result = TlsGetValue(key);
    SetLastError(error);
    return result;
}

void
PyThread_delete_key_value(int key)
{
    /* NULL is used as "key missing", and it is also the default
     * given by TlsGetValue() if nothing has been set yet.
     */
    TlsSetValue(key, NULL);
}


/* reinitialization of TLS is not necessary after fork when using
 * the native TLS functions.  And forking isn't supported on Windows either.
 */
void
PyThread_ReInitTLS(void)
{
}


/* Thread Specific Storage (TSS) API

   Platform-specific components of TSS API implementation.
*/

int
PyThread_tss_create(Py_tss_t *key)
{
    assert(key != NULL);
    /* If the key has been created, function is silently skipped. */
    if (key->_is_initialized) {
        return 0;
    }

    DWORD result = TlsAlloc();
    if (result == TLS_OUT_OF_INDEXES) {
        return -1;
    }
    /* In Windows, platform-specific key type is DWORD. */
    key->_key = result;
    key->_is_initialized = 1;
    return 0;
}

void
PyThread_tss_delete(Py_tss_t *key)
{
    assert(key != NULL);
    /* If the key has not been created, function is silently skipped. */
    if (!key->_is_initialized) {
        return;
    }

    TlsFree(key->_key);
    key->_key = TLS_OUT_OF_INDEXES;
    key->_is_initialized = 0;
}

int
PyThread_tss_set(Py_tss_t *key, void *value)
{
    assert(key != NULL);
    BOOL ok = TlsSetValue(key->_key, value);
    return ok ? 0 : -1;
}

void *
PyThread_tss_get(Py_tss_t *key)
{
    assert(key != NULL);
    /* because TSS is used in the Py_END_ALLOW_THREAD macro,
     * it is necessary to preserve the windows error state, because
     * it is assumed to be preserved across the call to the macro.
     * Ideally, the macro should be fixed, but it is simpler to
     * do it here.
     */
    DWORD error = GetLastError();
    void *result = TlsGetValue(key->_key);
    SetLastError(error);
    return result;
}
back to top