Staging
v0.5.1
https://github.com/python/cpython
Revision 64838ce7172c7a92183b39b22504b433a33a884d authored by bobince on 11 March 2020, 23:39:02 UTC, committed by GitHub on 11 March 2020, 23:39:02 UTC
The 32-bit (49-day) TickCount relied on in EnterNonRecursiveMutex can overflow
in the gap between the 'target' time and the 'now' time WaitForSingleObjectEx
returns, causing the loop to think it needs to wait another 49 days. This is
most likely to happen when the machine is hibernated during
WaitForSingleObjectEx.

This makes acquiring a lock/event/etc from the _thread or threading module
appear to never timeout.

Replace with GetTickCount64 - this is OK now Python no longer supports XP which
lacks it, and is in use for time.monotonic().

Co-authored-by: And Clover <and.clover@bromium.com>
1 parent 894adc1
Raw File
Tip revision: 64838ce7172c7a92183b39b22504b433a33a884d authored by bobince on 11 March 2020, 23:39:02 UTC
bpo-39847: EnterNonRecursiveMutex() uses GetTickCount64() (GH-18780)
Tip revision: 64838ce
pytime.c
#include "Python.h"
#ifdef MS_WINDOWS
#include <windows.h>
#endif

#if defined(__APPLE__)
#include <mach/mach_time.h>   /* mach_absolute_time(), mach_timebase_info() */
#endif

#define _PyTime_check_mul_overflow(a, b) \
    (assert(b > 0), \
     (_PyTime_t)(a) < _PyTime_MIN / (_PyTime_t)(b) \
     || _PyTime_MAX / (_PyTime_t)(b) < (_PyTime_t)(a))

/* To millisecond (10^-3) */
#define SEC_TO_MS 1000

/* To microseconds (10^-6) */
#define MS_TO_US 1000
#define SEC_TO_US (SEC_TO_MS * MS_TO_US)

/* To nanoseconds (10^-9) */
#define US_TO_NS 1000
#define MS_TO_NS (MS_TO_US * US_TO_NS)
#define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)

/* Conversion from nanoseconds */
#define NS_TO_MS (1000 * 1000)
#define NS_TO_US (1000)

static void
error_time_t_overflow(void)
{
    PyErr_SetString(PyExc_OverflowError,
                    "timestamp out of range for platform time_t");
}

static void
_PyTime_overflow(void)
{
    PyErr_SetString(PyExc_OverflowError,
                    "timestamp too large to convert to C _PyTime_t");
}


_PyTime_t
_PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div)
{
    _PyTime_t intpart, remaining;
    /* Compute (ticks * mul / div) in two parts to prevent integer overflow:
       compute integer part, and then the remaining part.

       (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div

       The caller must ensure that "(div - 1) * mul" cannot overflow. */
    intpart = ticks / div;
    ticks %= div;
    remaining = ticks * mul;
    remaining /= div;
    return intpart * mul + remaining;
}


time_t
_PyLong_AsTime_t(PyObject *obj)
{
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
    long long val;
    val = PyLong_AsLongLong(obj);
#else
    long val;
    Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
    val = PyLong_AsLong(obj);
#endif
    if (val == -1 && PyErr_Occurred()) {
        if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
            error_time_t_overflow();
        }
        return -1;
    }
    return (time_t)val;
}

PyObject *
_PyLong_FromTime_t(time_t t)
{
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
    return PyLong_FromLongLong((long long)t);
#else
    Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long));
    return PyLong_FromLong((long)t);
#endif
}

/* Round to nearest with ties going to nearest even integer
   (_PyTime_ROUND_HALF_EVEN) */
static double
_PyTime_RoundHalfEven(double x)
{
    double rounded = round(x);
    if (fabs(x-rounded) == 0.5) {
        /* halfway case: round to even */
        rounded = 2.0*round(x/2.0);
    }
    return rounded;
}

static double
_PyTime_Round(double x, _PyTime_round_t round)
{
    /* volatile avoids optimization changing how numbers are rounded */
    volatile double d;

    d = x;
    if (round == _PyTime_ROUND_HALF_EVEN) {
        d = _PyTime_RoundHalfEven(d);
    }
    else if (round == _PyTime_ROUND_CEILING) {
        d = ceil(d);
    }
    else if (round == _PyTime_ROUND_FLOOR) {
        d = floor(d);
    }
    else {
        assert(round == _PyTime_ROUND_UP);
        d = (d >= 0.0) ? ceil(d) : floor(d);
    }
    return d;
}

static int
_PyTime_DoubleToDenominator(double d, time_t *sec, long *numerator,
                            long idenominator, _PyTime_round_t round)
{
    double denominator = (double)idenominator;
    double intpart;
    /* volatile avoids optimization changing how numbers are rounded */
    volatile double floatpart;

    floatpart = modf(d, &intpart);

    floatpart *= denominator;
    floatpart = _PyTime_Round(floatpart, round);
    if (floatpart >= denominator) {
        floatpart -= denominator;
        intpart += 1.0;
    }
    else if (floatpart < 0) {
        floatpart += denominator;
        intpart -= 1.0;
    }
    assert(0.0 <= floatpart && floatpart < denominator);

    if (!_Py_InIntegralTypeRange(time_t, intpart)) {
        error_time_t_overflow();
        return -1;
    }
    *sec = (time_t)intpart;
    *numerator = (long)floatpart;
    assert(0 <= *numerator && *numerator < idenominator);
    return 0;
}

static int
_PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator,
                            long denominator, _PyTime_round_t round)
{
    assert(denominator >= 1);

    if (PyFloat_Check(obj)) {
        double d = PyFloat_AsDouble(obj);
        if (Py_IS_NAN(d)) {
            *numerator = 0;
            PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
            return -1;
        }
        return _PyTime_DoubleToDenominator(d, sec, numerator,
                                           denominator, round);
    }
    else {
        *sec = _PyLong_AsTime_t(obj);
        *numerator = 0;
        if (*sec == (time_t)-1 && PyErr_Occurred()) {
            return -1;
        }
        return 0;
    }
}

int
_PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
{
    if (PyFloat_Check(obj)) {
        double intpart;
        /* volatile avoids optimization changing how numbers are rounded */
        volatile double d;

        d = PyFloat_AsDouble(obj);
        if (Py_IS_NAN(d)) {
            PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
            return -1;
        }

        d = _PyTime_Round(d, round);
        (void)modf(d, &intpart);

        if (!_Py_InIntegralTypeRange(time_t, intpart)) {
            error_time_t_overflow();
            return -1;
        }
        *sec = (time_t)intpart;
        return 0;
    }
    else {
        *sec = _PyLong_AsTime_t(obj);
        if (*sec == (time_t)-1 && PyErr_Occurred()) {
            return -1;
        }
        return 0;
    }
}

int
_PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec,
                         _PyTime_round_t round)
{
    return _PyTime_ObjectToDenominator(obj, sec, nsec, SEC_TO_NS, round);
}

int
_PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec,
                        _PyTime_round_t round)
{
    return _PyTime_ObjectToDenominator(obj, sec, usec, SEC_TO_US, round);
}

_PyTime_t
_PyTime_FromSeconds(int seconds)
{
    _PyTime_t t;
    /* ensure that integer overflow cannot happen, int type should have 32
       bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30
       bits). */
    Py_BUILD_ASSERT(INT_MAX <= _PyTime_MAX / SEC_TO_NS);
    Py_BUILD_ASSERT(INT_MIN >= _PyTime_MIN / SEC_TO_NS);

    t = (_PyTime_t)seconds;
    assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS)
           || (t < 0 && t >= _PyTime_MIN / SEC_TO_NS));
    t *= SEC_TO_NS;
    return t;
}

_PyTime_t
_PyTime_FromNanoseconds(_PyTime_t ns)
{
    /* _PyTime_t already uses nanosecond resolution, no conversion needed */
    return ns;
}

int
_PyTime_FromNanosecondsObject(_PyTime_t *tp, PyObject *obj)
{
    long long nsec;
    _PyTime_t t;

    if (!PyLong_Check(obj)) {
        PyErr_Format(PyExc_TypeError, "expect int, got %s",
                     Py_TYPE(obj)->tp_name);
        return -1;
    }

    Py_BUILD_ASSERT(sizeof(long long) == sizeof(_PyTime_t));
    nsec = PyLong_AsLongLong(obj);
    if (nsec == -1 && PyErr_Occurred()) {
        if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
            _PyTime_overflow();
        }
        return -1;
    }

    /* _PyTime_t already uses nanosecond resolution, no conversion needed */
    t = (_PyTime_t)nsec;
    *tp = t;
    return 0;
}

#ifdef HAVE_CLOCK_GETTIME
static int
pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise)
{
    _PyTime_t t, nsec;
    int res = 0;

    Py_BUILD_ASSERT(sizeof(ts->tv_sec) <= sizeof(_PyTime_t));
    t = (_PyTime_t)ts->tv_sec;

    if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) {
        if (raise) {
            _PyTime_overflow();
        }
        res = -1;
        t = (t > 0) ? _PyTime_MAX : _PyTime_MIN;
    }
    else {
        t = t * SEC_TO_NS;
    }

    nsec = ts->tv_nsec;
    /* The following test is written for positive only nsec */
    assert(nsec >= 0);
    if (t > _PyTime_MAX - nsec) {
        if (raise) {
            _PyTime_overflow();
        }
        res = -1;
        t = _PyTime_MAX;
    }
    else {
        t += nsec;
    }

    *tp = t;
    return res;
}

int
_PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts)
{
    return pytime_fromtimespec(tp, ts, 1);
}
#endif

#if !defined(MS_WINDOWS)
static int
pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise)
{
    _PyTime_t t, usec;
    int res = 0;

    Py_BUILD_ASSERT(sizeof(tv->tv_sec) <= sizeof(_PyTime_t));
    t = (_PyTime_t)tv->tv_sec;

    if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) {
        if (raise) {
            _PyTime_overflow();
        }
        res = -1;
        t = (t > 0) ? _PyTime_MAX : _PyTime_MIN;
    }
    else {
        t = t * SEC_TO_NS;
    }

    usec = (_PyTime_t)tv->tv_usec * US_TO_NS;
    /* The following test is written for positive only usec */
    assert(usec >= 0);
    if (t > _PyTime_MAX - usec) {
        if (raise) {
            _PyTime_overflow();
        }
        res = -1;
        t = _PyTime_MAX;
    }
    else {
        t += usec;
    }

    *tp = t;
    return res;
}

int
_PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv)
{
    return pytime_fromtimeval(tp, tv, 1);
}
#endif

static int
_PyTime_FromDouble(_PyTime_t *t, double value, _PyTime_round_t round,
                   long unit_to_ns)
{
    /* volatile avoids optimization changing how numbers are rounded */
    volatile double d;

    /* convert to a number of nanoseconds */
    d = value;
    d *= (double)unit_to_ns;
    d = _PyTime_Round(d, round);

    if (!_Py_InIntegralTypeRange(_PyTime_t, d)) {
        _PyTime_overflow();
        return -1;
    }
    *t = (_PyTime_t)d;
    return 0;
}

static int
_PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round,
                   long unit_to_ns)
{
    if (PyFloat_Check(obj)) {
        double d;
        d = PyFloat_AsDouble(obj);
        if (Py_IS_NAN(d)) {
            PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
            return -1;
        }
        return _PyTime_FromDouble(t, d, round, unit_to_ns);
    }
    else {
        long long sec;
        Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t));

        sec = PyLong_AsLongLong(obj);
        if (sec == -1 && PyErr_Occurred()) {
            if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
                _PyTime_overflow();
            }
            return -1;
        }

        if (_PyTime_check_mul_overflow(sec, unit_to_ns)) {
            _PyTime_overflow();
            return -1;
        }
        *t = sec * unit_to_ns;
        return 0;
    }
}

int
_PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
{
    return _PyTime_FromObject(t, obj, round, SEC_TO_NS);
}

int
_PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
{
    return _PyTime_FromObject(t, obj, round, MS_TO_NS);
}

double
_PyTime_AsSecondsDouble(_PyTime_t t)
{
    /* volatile avoids optimization changing how numbers are rounded */
    volatile double d;

    if (t % SEC_TO_NS == 0) {
        _PyTime_t secs;
        /* Divide using integers to avoid rounding issues on the integer part.
           1e-9 cannot be stored exactly in IEEE 64-bit. */
        secs = t / SEC_TO_NS;
        d = (double)secs;
    }
    else {
        d = (double)t;
        d /= 1e9;
    }
    return d;
}

PyObject *
_PyTime_AsNanosecondsObject(_PyTime_t t)
{
    Py_BUILD_ASSERT(sizeof(long long) >= sizeof(_PyTime_t));
    return PyLong_FromLongLong((long long)t);
}

static _PyTime_t
_PyTime_Divide(const _PyTime_t t, const _PyTime_t k,
               const _PyTime_round_t round)
{
    assert(k > 1);
    if (round == _PyTime_ROUND_HALF_EVEN) {
        _PyTime_t x, r, abs_r;
        x = t / k;
        r = t % k;
        abs_r = Py_ABS(r);
        if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) {
            if (t >= 0) {
                x++;
            }
            else {
                x--;
            }
        }
        return x;
    }
    else if (round == _PyTime_ROUND_CEILING) {
        if (t >= 0) {
            return (t + k - 1) / k;
        }
        else {
            return t / k;
        }
    }
    else if (round == _PyTime_ROUND_FLOOR){
        if (t >= 0) {
            return t / k;
        }
        else {
            return (t - (k - 1)) / k;
        }
    }
    else {
        assert(round == _PyTime_ROUND_UP);
        if (t >= 0) {
            return (t + k - 1) / k;
        }
        else {
            return (t - (k - 1)) / k;
        }
    }
}

_PyTime_t
_PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round)
{
    return _PyTime_Divide(t, NS_TO_MS, round);
}

_PyTime_t
_PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round)
{
    return _PyTime_Divide(t, NS_TO_US, round);
}

static int
_PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us,
                       _PyTime_round_t round)
{
    _PyTime_t secs, ns;
    int usec;
    int res = 0;

    secs = t / SEC_TO_NS;
    ns = t % SEC_TO_NS;

    usec = (int)_PyTime_Divide(ns, US_TO_NS, round);
    if (usec < 0) {
        usec += SEC_TO_US;
        if (secs != _PyTime_MIN) {
            secs -= 1;
        }
        else {
            res = -1;
        }
    }
    else if (usec >= SEC_TO_US) {
        usec -= SEC_TO_US;
        if (secs != _PyTime_MAX) {
            secs += 1;
        }
        else {
            res = -1;
        }
    }
    assert(0 <= usec && usec < SEC_TO_US);

    *p_secs = secs;
    *p_us = usec;

    return res;
}

static int
_PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv,
                             _PyTime_round_t round, int raise)
{
    _PyTime_t secs, secs2;
    int us;
    int res;

    res = _PyTime_AsTimeval_impl(t, &secs, &us, round);

#ifdef MS_WINDOWS
    tv->tv_sec = (long)secs;
#else
    tv->tv_sec = secs;
#endif
    tv->tv_usec = us;

    secs2 = (_PyTime_t)tv->tv_sec;
    if (res < 0 || secs2 != secs) {
        if (raise) {
            error_time_t_overflow();
        }
        return -1;
    }
    return 0;
}

int
_PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
{
    return _PyTime_AsTimevalStruct_impl(t, tv, round, 1);
}

int
_PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
{
    return _PyTime_AsTimevalStruct_impl(t, tv, round, 0);
}

int
_PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us,
                        _PyTime_round_t round)
{
    _PyTime_t secs;
    int res;

    res = _PyTime_AsTimeval_impl(t, &secs, us, round);

    *p_secs = secs;

    if (res < 0 || (_PyTime_t)*p_secs != secs) {
        error_time_t_overflow();
        return -1;
    }
    return 0;
}


#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE)
int
_PyTime_AsTimespec(_PyTime_t t, struct timespec *ts)
{
    _PyTime_t secs, nsec;

    secs = t / SEC_TO_NS;
    nsec = t % SEC_TO_NS;
    if (nsec < 0) {
        nsec += SEC_TO_NS;
        secs -= 1;
    }
    ts->tv_sec = (time_t)secs;
    assert(0 <= nsec && nsec < SEC_TO_NS);
    ts->tv_nsec = nsec;

    if ((_PyTime_t)ts->tv_sec != secs) {
        error_time_t_overflow();
        return -1;
    }
    return 0;
}
#endif

static int
pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
{
#ifdef MS_WINDOWS
    FILETIME system_time;
    ULARGE_INTEGER large;

    assert(info == NULL || raise);

    GetSystemTimeAsFileTime(&system_time);
    large.u.LowPart = system_time.dwLowDateTime;
    large.u.HighPart = system_time.dwHighDateTime;
    /* 11,644,473,600,000,000,000: number of nanoseconds between
       the 1st january 1601 and the 1st january 1970 (369 years + 89 leap
       days). */
    *tp = large.QuadPart * 100 - 11644473600000000000;
    if (info) {
        DWORD timeAdjustment, timeIncrement;
        BOOL isTimeAdjustmentDisabled, ok;

        info->implementation = "GetSystemTimeAsFileTime()";
        info->monotonic = 0;
        ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
                                     &isTimeAdjustmentDisabled);
        if (!ok) {
            PyErr_SetFromWindowsErr(0);
            return -1;
        }
        info->resolution = timeIncrement * 1e-7;
        info->adjustable = 1;
    }

#else   /* MS_WINDOWS */
    int err;
#ifdef HAVE_CLOCK_GETTIME
    struct timespec ts;
#else
    struct timeval tv;
#endif

    assert(info == NULL || raise);

#ifdef HAVE_CLOCK_GETTIME
    err = clock_gettime(CLOCK_REALTIME, &ts);
    if (err) {
        if (raise) {
            PyErr_SetFromErrno(PyExc_OSError);
        }
        return -1;
    }
    if (pytime_fromtimespec(tp, &ts, raise) < 0) {
        return -1;
    }

    if (info) {
        struct timespec res;
        info->implementation = "clock_gettime(CLOCK_REALTIME)";
        info->monotonic = 0;
        info->adjustable = 1;
        if (clock_getres(CLOCK_REALTIME, &res) == 0) {
            info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
        }
        else {
            info->resolution = 1e-9;
        }
    }
#else   /* HAVE_CLOCK_GETTIME */

     /* test gettimeofday() */
    err = gettimeofday(&tv, (struct timezone *)NULL);
    if (err) {
        if (raise) {
            PyErr_SetFromErrno(PyExc_OSError);
        }
        return -1;
    }
    if (pytime_fromtimeval(tp, &tv, raise) < 0) {
        return -1;
    }

    if (info) {
        info->implementation = "gettimeofday()";
        info->resolution = 1e-6;
        info->monotonic = 0;
        info->adjustable = 1;
    }
#endif   /* !HAVE_CLOCK_GETTIME */
#endif   /* !MS_WINDOWS */
    return 0;
}

_PyTime_t
_PyTime_GetSystemClock(void)
{
    _PyTime_t t;
    if (pygettimeofday(&t, NULL, 0) < 0) {
        /* should not happen, _PyTime_Init() checked the clock at startup */
        Py_FatalError("pygettimeofday() failed");
    }
    return t;
}

int
_PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
{
    return pygettimeofday(t, info, 1);
}

static int
pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
{
#if defined(MS_WINDOWS)
    ULONGLONG ticks;
    _PyTime_t t;

    assert(info == NULL || raise);

    ticks = GetTickCount64();
    Py_BUILD_ASSERT(sizeof(ticks) <= sizeof(_PyTime_t));
    t = (_PyTime_t)ticks;

    if (_PyTime_check_mul_overflow(t, MS_TO_NS)) {
        if (raise) {
            _PyTime_overflow();
            return -1;
        }
        /* Hello, time traveler! */
        Py_FatalError("pymonotonic: integer overflow");
    }
    *tp = t * MS_TO_NS;

    if (info) {
        DWORD timeAdjustment, timeIncrement;
        BOOL isTimeAdjustmentDisabled, ok;
        info->implementation = "GetTickCount64()";
        info->monotonic = 1;
        ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
                                     &isTimeAdjustmentDisabled);
        if (!ok) {
            PyErr_SetFromWindowsErr(0);
            return -1;
        }
        info->resolution = timeIncrement * 1e-7;
        info->adjustable = 0;
    }

#elif defined(__APPLE__)
    static mach_timebase_info_data_t timebase;
    static uint64_t t0 = 0;
    uint64_t ticks;

    if (timebase.denom == 0) {
        /* According to the Technical Q&A QA1398, mach_timebase_info() cannot
           fail: https://developer.apple.com/library/mac/#qa/qa1398/ */
        (void)mach_timebase_info(&timebase);

        /* Sanity check: should never occur in practice */
        if (timebase.numer < 1 || timebase.denom < 1) {
            PyErr_SetString(PyExc_RuntimeError,
                            "invalid mach_timebase_info");
            return -1;
        }

        /* Check that timebase.numer and timebase.denom can be casted to
           _PyTime_t. In practice, timebase uses uint32_t, so casting cannot
           overflow. At the end, only make sure that the type is uint32_t
           (_PyTime_t is 64-bit long). */
        assert(sizeof(timebase.numer) < sizeof(_PyTime_t));
        assert(sizeof(timebase.denom) < sizeof(_PyTime_t));

        /* Make sure that (ticks * timebase.numer) cannot overflow in
           _PyTime_MulDiv(), with ticks < timebase.denom.

           Known time bases:

           * always (1, 1) on Intel
           * (1000000000, 33333335) or (1000000000, 25000000) on PowerPC

           None of these time bases can overflow with 64-bit _PyTime_t, but
           check for overflow, just in case. */
        if ((_PyTime_t)timebase.numer > _PyTime_MAX / (_PyTime_t)timebase.denom) {
            PyErr_SetString(PyExc_OverflowError,
                            "mach_timebase_info is too large");
            return -1;
        }

        t0 = mach_absolute_time();
    }

    if (info) {
        info->implementation = "mach_absolute_time()";
        info->resolution = (double)timebase.numer / (double)timebase.denom * 1e-9;
        info->monotonic = 1;
        info->adjustable = 0;
    }

    ticks = mach_absolute_time();
    /* Use a "time zero" to reduce precision loss when converting time
       to floatting point number, as in time.monotonic(). */
    ticks -= t0;
    *tp = _PyTime_MulDiv(ticks,
                         (_PyTime_t)timebase.numer,
                         (_PyTime_t)timebase.denom);

#elif defined(__hpux)
    hrtime_t time;

    time = gethrtime();
    if (time == -1) {
        if (raise) {
            PyErr_SetFromErrno(PyExc_OSError);
        }
        return -1;
    }

    *tp = time;

    if (info) {
        info->implementation = "gethrtime()";
        info->resolution = 1e-9;
        info->monotonic = 1;
        info->adjustable = 0;
    }

#else
    struct timespec ts;
#ifdef CLOCK_HIGHRES
    const clockid_t clk_id = CLOCK_HIGHRES;
    const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
#else
    const clockid_t clk_id = CLOCK_MONOTONIC;
    const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
#endif

    assert(info == NULL || raise);

    if (clock_gettime(clk_id, &ts) != 0) {
        if (raise) {
            PyErr_SetFromErrno(PyExc_OSError);
            return -1;
        }
        return -1;
    }

    if (info) {
        struct timespec res;
        info->monotonic = 1;
        info->implementation = implementation;
        info->adjustable = 0;
        if (clock_getres(clk_id, &res) != 0) {
            PyErr_SetFromErrno(PyExc_OSError);
            return -1;
        }
        info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
    }
    if (pytime_fromtimespec(tp, &ts, raise) < 0) {
        return -1;
    }
#endif
    return 0;
}

_PyTime_t
_PyTime_GetMonotonicClock(void)
{
    _PyTime_t t;
    if (pymonotonic(&t, NULL, 0) < 0) {
        /* should not happen, _PyTime_Init() checked that monotonic clock at
           startup */
        Py_FatalError("pymonotonic() failed");
    }
    return t;
}

int
_PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
    return pymonotonic(tp, info, 1);
}


#ifdef MS_WINDOWS
static int
win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info)
{
    static LONGLONG frequency = 0;
    static LONGLONG t0 = 0;
    LARGE_INTEGER now;
    LONGLONG ticksll;
    _PyTime_t ticks;

    if (frequency == 0) {
        LARGE_INTEGER freq;
        if (!QueryPerformanceFrequency(&freq)) {
            PyErr_SetFromWindowsErr(0);
            return -1;
        }
        frequency = freq.QuadPart;

        /* Sanity check: should never occur in practice */
        if (frequency < 1) {
            PyErr_SetString(PyExc_RuntimeError,
                            "invalid QueryPerformanceFrequency");
            return -1;
        }

        /* Check that frequency can be casted to _PyTime_t.

           Make also sure that (ticks * SEC_TO_NS) cannot overflow in
           _PyTime_MulDiv(), with ticks < frequency.

           Known QueryPerformanceFrequency() values:

           * 10,000,000 (10 MHz): 100 ns resolution
           * 3,579,545 Hz (3.6 MHz): 279 ns resolution

           None of these frequencies can overflow with 64-bit _PyTime_t, but
           check for overflow, just in case. */
        if (frequency > _PyTime_MAX
            || frequency > (LONGLONG)_PyTime_MAX / (LONGLONG)SEC_TO_NS) {
            PyErr_SetString(PyExc_OverflowError,
                            "QueryPerformanceFrequency is too large");
            return -1;
        }

        QueryPerformanceCounter(&now);
        t0 = now.QuadPart;
    }

    if (info) {
        info->implementation = "QueryPerformanceCounter()";
        info->resolution = 1.0 / (double)frequency;
        info->monotonic = 1;
        info->adjustable = 0;
    }

    QueryPerformanceCounter(&now);
    ticksll = now.QuadPart;

    /* Use a "time zero" to reduce precision loss when converting time
       to floatting point number, as in time.perf_counter(). */
    ticksll -= t0;

    /* Make sure that casting LONGLONG to _PyTime_t cannot overflow,
       both types are signed */
    Py_BUILD_ASSERT(sizeof(ticksll) <= sizeof(ticks));
    ticks = (_PyTime_t)ticksll;

    *tp = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency);
    return 0;
}
#endif


int
_PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
{
#ifdef MS_WINDOWS
    return win_perf_counter(t, info);
#else
    return _PyTime_GetMonotonicClockWithInfo(t, info);
#endif
}


_PyTime_t
_PyTime_GetPerfCounter(void)
{
    _PyTime_t t;
    if (_PyTime_GetPerfCounterWithInfo(&t, NULL)) {
        Py_FatalError("_PyTime_GetPerfCounterWithInfo() failed");
    }
    return t;
}


int
_PyTime_Init(void)
{
    /* check that time.time(), time.monotonic() and time.perf_counter() clocks
       are working properly to not have to check for exceptions at runtime. If
       a clock works once, it cannot fail in next calls. */
    _PyTime_t t;
    if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0) {
        return -1;
    }
    if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0) {
        return -1;
    }
    if (_PyTime_GetPerfCounterWithInfo(&t, NULL) < 0) {
        return -1;
    }
    return 0;
}

int
_PyTime_localtime(time_t t, struct tm *tm)
{
#ifdef MS_WINDOWS
    int error;

    error = localtime_s(tm, &t);
    if (error != 0) {
        errno = error;
        PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    return 0;
#else /* !MS_WINDOWS */

#if defined(_AIX) && (SIZEOF_TIME_T < 8)
    /* bpo-34373: AIX does not return NULL if t is too small or too large */
    if (t < -2145916800 /* 1902-01-01 */
       || t > 2145916800 /* 2038-01-01 */) {
        errno = EINVAL;
        PyErr_SetString(PyExc_OverflowError,
                        "localtime argument out of range");
        return -1;
    }
#endif

    errno = 0;
    if (localtime_r(&t, tm) == NULL) {
        if (errno == 0) {
            errno = EINVAL;
        }
        PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    return 0;
#endif /* MS_WINDOWS */
}

int
_PyTime_gmtime(time_t t, struct tm *tm)
{
#ifdef MS_WINDOWS
    int error;

    error = gmtime_s(tm, &t);
    if (error != 0) {
        errno = error;
        PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    return 0;
#else /* !MS_WINDOWS */
    if (gmtime_r(&t, tm) == NULL) {
#ifdef EINVAL
        if (errno == 0) {
            errno = EINVAL;
        }
#endif
        PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    return 0;
#endif /* MS_WINDOWS */
}
back to top