Staging
v0.8.1
Revision 5d6b151fdd0a9e41ba68b444760616da1a008433 authored by Johannes Schindelin on 28 December 2006, 16:13:33 UTC, committed by Junio C Hamano on 28 December 2006, 21:59:39 UTC
The function xdl_refine_conflicts() tries to break down huge
conflicts by doing a diff on the conflicting regions. However,
this does not make sense when one side is empty.

Worse, when one side is not only empty, but after EOF, the code
accessed unmapped memory.

Noticed by Luben Tuikov, Shawn Pearce and Alexandre Julliard, the
latter providing a test case.

Signed-off-by: Johannes Schindelin <Johannes.Schindelin@gmx.de>
Signed-off-by: Junio C Hamano <junkio@cox.net>
1 parent 4a4d94b
Raw File
diffcore-delta.c
#include "cache.h"
#include "diff.h"
#include "diffcore.h"

/*
 * Idea here is very simple.
 *
 * We have total of (sz-N+1) N-byte overlapping sequences in buf whose
 * size is sz.  If the same N-byte sequence appears in both source and
 * destination, we say the byte that starts that sequence is shared
 * between them (i.e. copied from source to destination).
 *
 * For each possible N-byte sequence, if the source buffer has more
 * instances of it than the destination buffer, that means the
 * difference are the number of bytes not copied from source to
 * destination.  If the counts are the same, everything was copied
 * from source to destination.  If the destination has more,
 * everything was copied, and destination added more.
 *
 * We are doing an approximation so we do not really have to waste
 * memory by actually storing the sequence.  We just hash them into
 * somewhere around 2^16 hashbuckets and count the occurrences.
 *
 * The length of the sequence is arbitrarily set to 8 for now.
 */

/* Wild guess at the initial hash size */
#define INITIAL_HASH_SIZE 9

/* We leave more room in smaller hash but do not let it
 * grow to have unused hole too much.
 */
#define INITIAL_FREE(sz_log2) ((1<<(sz_log2))*(sz_log2-3)/(sz_log2))

/* A prime rather carefully chosen between 2^16..2^17, so that
 * HASHBASE < INITIAL_FREE(17).  We want to keep the maximum hashtable
 * size under the current 2<<17 maximum, which can hold this many
 * different values before overflowing to hashtable of size 2<<18.
 */
#define HASHBASE 107927

struct spanhash {
	unsigned int hashval;
	unsigned int cnt;
};
struct spanhash_top {
	int alloc_log2;
	int free;
	struct spanhash data[FLEX_ARRAY];
};

static struct spanhash *spanhash_find(struct spanhash_top *top,
				      unsigned int hashval)
{
	int sz = 1 << top->alloc_log2;
	int bucket = hashval & (sz - 1);
	while (1) {
		struct spanhash *h = &(top->data[bucket++]);
		if (!h->cnt)
			return NULL;
		if (h->hashval == hashval)
			return h;
		if (sz <= bucket)
			bucket = 0;
	}
}

static struct spanhash_top *spanhash_rehash(struct spanhash_top *orig)
{
	struct spanhash_top *new;
	int i;
	int osz = 1 << orig->alloc_log2;
	int sz = osz << 1;

	new = xmalloc(sizeof(*orig) + sizeof(struct spanhash) * sz);
	new->alloc_log2 = orig->alloc_log2 + 1;
	new->free = INITIAL_FREE(new->alloc_log2);
	memset(new->data, 0, sizeof(struct spanhash) * sz);
	for (i = 0; i < osz; i++) {
		struct spanhash *o = &(orig->data[i]);
		int bucket;
		if (!o->cnt)
			continue;
		bucket = o->hashval & (sz - 1);
		while (1) {
			struct spanhash *h = &(new->data[bucket++]);
			if (!h->cnt) {
				h->hashval = o->hashval;
				h->cnt = o->cnt;
				new->free--;
				break;
			}
			if (sz <= bucket)
				bucket = 0;
		}
	}
	free(orig);
	return new;
}

static struct spanhash_top *add_spanhash(struct spanhash_top *top,
					 unsigned int hashval, int cnt)
{
	int bucket, lim;
	struct spanhash *h;

	lim = (1 << top->alloc_log2);
	bucket = hashval & (lim - 1);
	while (1) {
		h = &(top->data[bucket++]);
		if (!h->cnt) {
			h->hashval = hashval;
			h->cnt = cnt;
			top->free--;
			if (top->free < 0)
				return spanhash_rehash(top);
			return top;
		}
		if (h->hashval == hashval) {
			h->cnt += cnt;
			return top;
		}
		if (lim <= bucket)
			bucket = 0;
	}
}

static struct spanhash_top *hash_chars(unsigned char *buf, unsigned int sz)
{
	int i, n;
	unsigned int accum1, accum2, hashval;
	struct spanhash_top *hash;

	i = INITIAL_HASH_SIZE;
	hash = xmalloc(sizeof(*hash) + sizeof(struct spanhash) * (1<<i));
	hash->alloc_log2 = i;
	hash->free = INITIAL_FREE(i);
	memset(hash->data, 0, sizeof(struct spanhash) * (1<<i));

	n = 0;
	accum1 = accum2 = 0;
	while (sz) {
		unsigned int c = *buf++;
		unsigned int old_1 = accum1;
		sz--;
		accum1 = (accum1 << 7) ^ (accum2 >> 25);
		accum2 = (accum2 << 7) ^ (old_1 >> 25);
		accum1 += c;
		if (++n < 64 && c != '\n')
			continue;
		hashval = (accum1 + accum2 * 0x61) % HASHBASE;
		hash = add_spanhash(hash, hashval, n);
		n = 0;
		accum1 = accum2 = 0;
	}
	return hash;
}

int diffcore_count_changes(void *src, unsigned long src_size,
			   void *dst, unsigned long dst_size,
			   void **src_count_p,
			   void **dst_count_p,
			   unsigned long delta_limit,
			   unsigned long *src_copied,
			   unsigned long *literal_added)
{
	int i, ssz;
	struct spanhash_top *src_count, *dst_count;
	unsigned long sc, la;

	src_count = dst_count = NULL;
	if (src_count_p)
		src_count = *src_count_p;
	if (!src_count) {
		src_count = hash_chars(src, src_size);
		if (src_count_p)
			*src_count_p = src_count;
	}
	if (dst_count_p)
		dst_count = *dst_count_p;
	if (!dst_count) {
		dst_count = hash_chars(dst, dst_size);
		if (dst_count_p)
			*dst_count_p = dst_count;
	}
	sc = la = 0;

	ssz = 1 << src_count->alloc_log2;
	for (i = 0; i < ssz; i++) {
		struct spanhash *s = &(src_count->data[i]);
		struct spanhash *d;
		unsigned dst_cnt, src_cnt;
		if (!s->cnt)
			continue;
		src_cnt = s->cnt;
		d = spanhash_find(dst_count, s->hashval);
		dst_cnt = d ? d->cnt : 0;
		if (src_cnt < dst_cnt) {
			la += dst_cnt - src_cnt;
			sc += src_cnt;
		}
		else
			sc += dst_cnt;
	}

	if (!src_count_p)
		free(src_count);
	if (!dst_count_p)
		free(dst_count);
	*src_copied = sc;
	*literal_added = la;
	return 0;
}
back to top