Staging
v0.8.1
https://github.com/python/cpython
Revision 512d2cc64328d06f4ff627497ab444e83e513348 authored by Raymond Hettinger on 25 January 2011, 21:32:39 UTC, committed by Raymond Hettinger on 25 January 2011, 21:32:39 UTC
(Reviewed by Georg Brandl.)

Also made similar changes to deque.reverse() though this wasn't
strictly necessary (the edge case cannot occur with two pointers
moving to meet in the middle).  Making the change in reverse()
was more a matter of future-proofing.
1 parent 5543e81
Raw File
Tip revision: 512d2cc64328d06f4ff627497ab444e83e513348 authored by Raymond Hettinger on 25 January 2011, 21:32:39 UTC
Issue #11004: Repair edge case in deque.count().
Tip revision: 512d2cc
_math.c
/* Definitions of some C99 math library functions, for those platforms
   that don't implement these functions already. */

#include "Python.h"
#include <float.h>
#include "_math.h"

/* The following copyright notice applies to the original
   implementations of acosh, asinh and atanh. */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

static const double ln2 = 6.93147180559945286227E-01;
static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
static const double two_pow_p28 = 268435456.0; /* 2**28 */
static const double zero = 0.0;

/* acosh(x)
 * Method :
 *      Based on
 *            acosh(x) = log [ x + sqrt(x*x-1) ]
 *      we have
 *            acosh(x) := log(x)+ln2, if x is large; else
 *            acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
 *            acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
 *
 * Special cases:
 *      acosh(x) is NaN with signal if x<1.
 *      acosh(NaN) is NaN without signal.
 */

double
_Py_acosh(double x)
{
    if (Py_IS_NAN(x)) {
        return x+x;
    }
    if (x < 1.) {                       /* x < 1;  return a signaling NaN */
        errno = EDOM;
#ifdef Py_NAN
        return Py_NAN;
#else
        return (x-x)/(x-x);
#endif
    }
    else if (x >= two_pow_p28) {        /* x > 2**28 */
        if (Py_IS_INFINITY(x)) {
            return x+x;
        }
        else {
            return log(x)+ln2;          /* acosh(huge)=log(2x) */
        }
    }
    else if (x == 1.) {
        return 0.0;                     /* acosh(1) = 0 */
    }
    else if (x > 2.) {                  /* 2 < x < 2**28 */
        double t = x*x;
        return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
    }
    else {                              /* 1 < x <= 2 */
        double t = x - 1.0;
        return m_log1p(t + sqrt(2.0*t + t*t));
    }
}


/* asinh(x)
 * Method :
 *      Based on
 *              asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
 *      we have
 *      asinh(x) := x  if  1+x*x=1,
 *               := sign(x)*(log(x)+ln2)) for large |x|, else
 *               := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
 *               := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
 */

double
_Py_asinh(double x)
{
    double w;
    double absx = fabs(x);

    if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
        return x+x;
    }
    if (absx < two_pow_m28) {           /* |x| < 2**-28 */
        return x;                       /* return x inexact except 0 */
    }
    if (absx > two_pow_p28) {           /* |x| > 2**28 */
        w = log(absx)+ln2;
    }
    else if (absx > 2.0) {              /* 2 < |x| < 2**28 */
        w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
    }
    else {                              /* 2**-28 <= |x| < 2= */
        double t = x*x;
        w = m_log1p(absx + t / (1.0 + sqrt(1.0 + t)));
    }
    return copysign(w, x);

}

/* atanh(x)
 * Method :
 *    1.Reduced x to positive by atanh(-x) = -atanh(x)
 *    2.For x>=0.5
 *                  1              2x                          x
 *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * -------)
 *                  2             1 - x                      1 - x
 *
 *      For x<0.5
 *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
 *
 * Special cases:
 *      atanh(x) is NaN if |x| >= 1 with signal;
 *      atanh(NaN) is that NaN with no signal;
 *
 */

double
_Py_atanh(double x)
{
    double absx;
    double t;

    if (Py_IS_NAN(x)) {
        return x+x;
    }
    absx = fabs(x);
    if (absx >= 1.) {                   /* |x| >= 1 */
        errno = EDOM;
#ifdef Py_NAN
        return Py_NAN;
#else
        return x/zero;
#endif
    }
    if (absx < two_pow_m28) {           /* |x| < 2**-28 */
        return x;
    }
    if (absx < 0.5) {                   /* |x| < 0.5 */
        t = absx+absx;
        t = 0.5 * m_log1p(t + t*absx / (1.0 - absx));
    }
    else {                              /* 0.5 <= |x| <= 1.0 */
        t = 0.5 * m_log1p((absx + absx) / (1.0 - absx));
    }
    return copysign(t, x);
}

/* Mathematically, expm1(x) = exp(x) - 1.  The expm1 function is designed
   to avoid the significant loss of precision that arises from direct
   evaluation of the expression exp(x) - 1, for x near 0. */

double
_Py_expm1(double x)
{
    /* For abs(x) >= log(2), it's safe to evaluate exp(x) - 1 directly; this
       also works fine for infinities and nans.

       For smaller x, we can use a method due to Kahan that achieves close to
       full accuracy.
    */

    if (fabs(x) < 0.7) {
        double u;
        u = exp(x);
        if (u == 1.0)
            return x;
        else
            return (u - 1.0) * x / log(u);
    }
    else
        return exp(x) - 1.0;
}

/* log1p(x) = log(1+x).  The log1p function is designed to avoid the
   significant loss of precision that arises from direct evaluation when x is
   small. */

double
_Py_log1p(double x)
{
    /* For x small, we use the following approach.  Let y be the nearest float
       to 1+x, then

         1+x = y * (1 - (y-1-x)/y)

       so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny, the
       second term is well approximated by (y-1-x)/y.  If abs(x) >=
       DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
       then y-1-x will be exactly representable, and is computed exactly by
       (y-1)-x.

       If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
       round-to-nearest then this method is slightly dangerous: 1+x could be
       rounded up to 1+DBL_EPSILON instead of down to 1, and in that case
       y-1-x will not be exactly representable any more and the result can be
       off by many ulps.  But this is easily fixed: for a floating-point
       number |x| < DBL_EPSILON/2., the closest floating-point number to
       log(1+x) is exactly x.
    */

    double y;
    if (fabs(x) < DBL_EPSILON/2.) {
        return x;
    }
    else if (-0.5 <= x && x <= 1.) {
        /* WARNING: it's possible than an overeager compiler
           will incorrectly optimize the following two lines
           to the equivalent of "return log(1.+x)". If this
           happens, then results from log1p will be inaccurate
           for small x. */
        y = 1.+x;
        return log(y)-((y-1.)-x)/y;
    }
    else {
        /* NaNs and infinities should end up here */
        return log(1.+x);
    }
}
back to top