Staging
v0.5.1
https://github.com/python/cpython
Revision 11d258ceafdf60ab3840f9a5700f2d0ad3e2e2d1 authored by Tapas Kundu on 04 August 2020, 02:33:30 UTC, committed by GitHub on 04 August 2020, 02:33:30 UTC
CVE-2020-14422: The __hash__() methods of classes IPv4Interface and IPv6Interface had issue
of generating constant hash values of 32 and 128 respectively causing hash collisions.
The fix uses the hash() function to generate hash values for the objects
instead of XOR operation.

(cherry picked from commit b30ee26e366bf509b7538d79bfec6c6d38d53f28)

Co-authored-by: Ravi Teja P <rvteja92@gmail.com>

Signed-off-by: Tapas Kundu <tkundu@vmware.com>
1 parent f205f10
Raw File
Tip revision: 11d258ceafdf60ab3840f9a5700f2d0ad3e2e2d1 authored by Tapas Kundu on 04 August 2020, 02:33:30 UTC
[3.5] bpo-41004: Resolve hash collisions for IPv4Interface and IPv6Interface (GH-21033) (#21233)
Tip revision: 11d258c
pytime.c
#include "Python.h"
#ifdef MS_WINDOWS
#include <windows.h>
#endif

#if defined(__APPLE__)
#include <mach/mach_time.h>   /* mach_absolute_time(), mach_timebase_info() */
#endif

/* To millisecond (10^-3) */
#define SEC_TO_MS 1000

/* To microseconds (10^-6) */
#define MS_TO_US 1000
#define SEC_TO_US (SEC_TO_MS * MS_TO_US)

/* To nanoseconds (10^-9) */
#define US_TO_NS 1000
#define MS_TO_NS (MS_TO_US * US_TO_NS)
#define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)

/* Conversion from nanoseconds */
#define NS_TO_MS (1000 * 1000)
#define NS_TO_US (1000)

static void
error_time_t_overflow(void)
{
    PyErr_SetString(PyExc_OverflowError,
                    "timestamp out of range for platform time_t");
}

time_t
_PyLong_AsTime_t(PyObject *obj)
{
#if defined(HAVE_LONG_LONG) && SIZEOF_TIME_T == SIZEOF_LONG_LONG
    PY_LONG_LONG val;
    val = PyLong_AsLongLong(obj);
#else
    long val;
    assert(sizeof(time_t) <= sizeof(long));
    val = PyLong_AsLong(obj);
#endif
    if (val == -1 && PyErr_Occurred()) {
        if (PyErr_ExceptionMatches(PyExc_OverflowError))
            error_time_t_overflow();
        return -1;
    }
    return (time_t)val;
}

PyObject *
_PyLong_FromTime_t(time_t t)
{
#if defined(HAVE_LONG_LONG) && SIZEOF_TIME_T == SIZEOF_LONG_LONG
    return PyLong_FromLongLong((PY_LONG_LONG)t);
#else
    assert(sizeof(time_t) <= sizeof(long));
    return PyLong_FromLong((long)t);
#endif
}

static int
_PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator,
                            double denominator, _PyTime_round_t round)
{
    assert(denominator <= LONG_MAX);
    if (PyFloat_Check(obj)) {
        double d, intpart, err;
        /* volatile avoids unsafe optimization on float enabled by gcc -O3 */
        volatile double floatpart;

        d = PyFloat_AsDouble(obj);
        floatpart = modf(d, &intpart);
        if (floatpart < 0) {
            floatpart = 1.0 + floatpart;
            intpart -= 1.0;
        }

        floatpart *= denominator;
        if (round == _PyTime_ROUND_CEILING) {
            floatpart = ceil(floatpart);
            if (floatpart >= denominator) {
                floatpart = 0.0;
                intpart += 1.0;
            }
        }
        else {
            floatpart = floor(floatpart);
        }

        *sec = (time_t)intpart;
        err = intpart - (double)*sec;
        if (err <= -1.0 || err >= 1.0) {
            error_time_t_overflow();
            return -1;
        }

        *numerator = (long)floatpart;
        return 0;
    }
    else {
        *sec = _PyLong_AsTime_t(obj);
        if (*sec == (time_t)-1 && PyErr_Occurred())
            return -1;
        *numerator = 0;
        return 0;
    }
}

int
_PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
{
    if (PyFloat_Check(obj)) {
        double d, intpart, err;

        d = PyFloat_AsDouble(obj);
        if (round == _PyTime_ROUND_CEILING)
            d = ceil(d);
        else
            d = floor(d);
        (void)modf(d, &intpart);

        *sec = (time_t)intpart;
        err = intpart - (double)*sec;
        if (err <= -1.0 || err >= 1.0) {
            error_time_t_overflow();
            return -1;
        }
        return 0;
    }
    else {
        *sec = _PyLong_AsTime_t(obj);
        if (*sec == (time_t)-1 && PyErr_Occurred())
            return -1;
        return 0;
    }
}

int
_PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec,
                         _PyTime_round_t round)
{
    return _PyTime_ObjectToDenominator(obj, sec, nsec, 1e9, round);
}

int
_PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec,
                        _PyTime_round_t round)
{
    return _PyTime_ObjectToDenominator(obj, sec, usec, 1e6, round);
}

static void
_PyTime_overflow(void)
{
    PyErr_SetString(PyExc_OverflowError,
                    "timestamp too large to convert to C _PyTime_t");
}

_PyTime_t
_PyTime_FromSeconds(int seconds)
{
    _PyTime_t t;
    /* ensure that integer overflow cannot happen, int type should have 32
       bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30
       bits). */
    assert((seconds >= 0 && seconds <= _PyTime_MAX / SEC_TO_NS)
           || (seconds < 0 && seconds >= _PyTime_MIN / SEC_TO_NS));
    t = (_PyTime_t)seconds * SEC_TO_NS;
    return t;
}

_PyTime_t
_PyTime_FromNanoseconds(PY_LONG_LONG ns)
{
    _PyTime_t t;
    assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t));
    t = Py_SAFE_DOWNCAST(ns, PY_LONG_LONG, _PyTime_t);
    return t;
}

#ifdef HAVE_CLOCK_GETTIME
static int
_PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts, int raise)
{
    _PyTime_t t;
    int res = 0;

    t = (_PyTime_t)ts->tv_sec * SEC_TO_NS;
    if (t / SEC_TO_NS != ts->tv_sec) {
        if (raise)
            _PyTime_overflow();
        res = -1;
    }

    t += ts->tv_nsec;

    *tp = t;
    return res;
}
#elif !defined(MS_WINDOWS)
static int
_PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv, int raise)
{
    _PyTime_t t;
    int res = 0;

    t = (_PyTime_t)tv->tv_sec * SEC_TO_NS;
    if (t / SEC_TO_NS != tv->tv_sec) {
        if (raise)
            _PyTime_overflow();
        res = -1;
    }

    t += (_PyTime_t)tv->tv_usec * US_TO_NS;

    *tp = t;
    return res;
}
#endif

static int
_PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round,
                   long to_nanoseconds)
{
    if (PyFloat_Check(obj)) {
        /* volatile avoids unsafe optimization on float enabled by gcc -O3 */
        volatile double d, err;

        /* convert to a number of nanoseconds */
        d = PyFloat_AsDouble(obj);
        d *= to_nanoseconds;

        if (round == _PyTime_ROUND_CEILING)
            d = ceil(d);
        else
            d = floor(d);

        *t = (_PyTime_t)d;
        err = d - (double)*t;
        if (fabs(err) >= 1.0) {
            _PyTime_overflow();
            return -1;
        }
        return 0;
    }
    else {
#ifdef HAVE_LONG_LONG
        PY_LONG_LONG sec;
        sec = PyLong_AsLongLong(obj);
        assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t));
#else
        long sec;
        sec = PyLong_AsLong(obj);
        assert(sizeof(PY_LONG_LONG) <= sizeof(_PyTime_t));
#endif
        if (sec == -1 && PyErr_Occurred()) {
            if (PyErr_ExceptionMatches(PyExc_OverflowError))
                _PyTime_overflow();
            return -1;
        }
        *t = sec * to_nanoseconds;
        if (*t / to_nanoseconds != sec) {
            _PyTime_overflow();
            return -1;
        }
        return 0;
    }
}

int
_PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
{
    return _PyTime_FromObject(t, obj, round, SEC_TO_NS);
}

int
_PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round)
{
    return _PyTime_FromObject(t, obj, round, MS_TO_NS);
}

double
_PyTime_AsSecondsDouble(_PyTime_t t)
{
    _PyTime_t sec, ns;
    /* Divide using integers to avoid rounding issues on the integer part.
       1e-9 cannot be stored exactly in IEEE 64-bit. */
    sec = t / SEC_TO_NS;
    ns = t % SEC_TO_NS;
    return (double)sec + (double)ns * 1e-9;
}

PyObject *
_PyTime_AsNanosecondsObject(_PyTime_t t)
{
#ifdef HAVE_LONG_LONG
    assert(sizeof(PY_LONG_LONG) >= sizeof(_PyTime_t));
    return PyLong_FromLongLong((PY_LONG_LONG)t);
#else
    assert(sizeof(long) >= sizeof(_PyTime_t));
    return PyLong_FromLong((long)t);
#endif
}

static _PyTime_t
_PyTime_Divide(const _PyTime_t t, const _PyTime_t k,
               const _PyTime_round_t round)
{
    assert(k > 1);
    if (round == _PyTime_ROUND_CEILING) {
        if (t >= 0)
            return (t + k - 1) / k;
        else
            return t / k;
    }
    else {
        if (t >= 0)
            return t / k;
        else
            return (t - (k - 1)) / k;
    }
}

_PyTime_t
_PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round)
{
    return _PyTime_Divide(t, NS_TO_MS, round);
}

_PyTime_t
_PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round)
{
    return _PyTime_Divide(t, NS_TO_US, round);
}

static int
_PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us,
                       _PyTime_round_t round)
{
    _PyTime_t secs, ns;
    int usec;
    int res = 0;

    secs = t / SEC_TO_NS;
    ns = t % SEC_TO_NS;

    usec = (int)_PyTime_Divide(ns, US_TO_NS, round);
    if (usec < 0) {
        usec += SEC_TO_US;
        if (secs != _PyTime_MIN)
            secs -= 1;
        else
            res = -1;
    }
    else if (usec >= SEC_TO_US) {
        usec -= SEC_TO_US;
        if (secs != _PyTime_MAX)
            secs += 1;
        else
            res = -1;
    }
    assert(0 <= usec && usec < SEC_TO_US);

    *p_secs = secs;
    *p_us = usec;

    return res;
}

static int
_PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv,
                             _PyTime_round_t round, int raise)
{
    _PyTime_t secs;
    int us;
    int res;

    res = _PyTime_AsTimeval_impl(t, &secs, &us, round);

#ifdef MS_WINDOWS
    tv->tv_sec = (long)secs;
#else
    tv->tv_sec = secs;
#endif
    tv->tv_usec = us;

    if (res < 0 || (_PyTime_t)tv->tv_sec != secs) {
        if (raise)
            error_time_t_overflow();
        return -1;
    }
    return 0;
}

int
_PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
{
    return _PyTime_AsTimevalStruct_impl(t, tv, round, 1);
}

int
_PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
{
    return _PyTime_AsTimevalStruct_impl(t, tv, round, 0);
}

int
_PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us,
                        _PyTime_round_t round)
{
    _PyTime_t secs;
    int res;

    res = _PyTime_AsTimeval_impl(t, &secs, us, round);

    *p_secs = secs;

    if (res < 0 || (_PyTime_t)*p_secs != secs) {
        error_time_t_overflow();
        return -1;
    }
    return 0;
}

#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE)
int
_PyTime_AsTimespec(_PyTime_t t, struct timespec *ts)
{
    _PyTime_t secs, nsec;

    secs = t / SEC_TO_NS;
    nsec = t % SEC_TO_NS;
    if (nsec < 0) {
        nsec += SEC_TO_NS;
        secs -= 1;
    }
    ts->tv_sec = (time_t)secs;
    if ((_PyTime_t)ts->tv_sec != secs) {
        _PyTime_overflow();
        return -1;
    }
    ts->tv_nsec = nsec;

    assert(0 <= ts->tv_nsec && ts->tv_nsec <= 999999999);
    return 0;
}
#endif

static int
pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
{
#ifdef MS_WINDOWS
    FILETIME system_time;
    ULARGE_INTEGER large;

    assert(info == NULL || raise);

    GetSystemTimeAsFileTime(&system_time);
    large.u.LowPart = system_time.dwLowDateTime;
    large.u.HighPart = system_time.dwHighDateTime;
    /* 11,644,473,600,000,000,000: number of nanoseconds between
       the 1st january 1601 and the 1st january 1970 (369 years + 89 leap
       days). */
    *tp = large.QuadPart * 100 - 11644473600000000000;
    if (info) {
        DWORD timeAdjustment, timeIncrement;
        BOOL isTimeAdjustmentDisabled, ok;

        info->implementation = "GetSystemTimeAsFileTime()";
        info->monotonic = 0;
        ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
                                     &isTimeAdjustmentDisabled);
        if (!ok) {
            PyErr_SetFromWindowsErr(0);
            return -1;
        }
        info->resolution = timeIncrement * 1e-7;
        info->adjustable = 1;
    }

#else   /* MS_WINDOWS */
    int err;
#ifdef HAVE_CLOCK_GETTIME
    struct timespec ts;
#else
    struct timeval tv;
#endif

    assert(info == NULL || raise);

#ifdef HAVE_CLOCK_GETTIME
    err = clock_gettime(CLOCK_REALTIME, &ts);
    if (err) {
        if (raise)
            PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    if (_PyTime_FromTimespec(tp, &ts, raise) < 0)
        return -1;

    if (info) {
        struct timespec res;
        info->implementation = "clock_gettime(CLOCK_REALTIME)";
        info->monotonic = 0;
        info->adjustable = 1;
        if (clock_getres(CLOCK_REALTIME, &res) == 0)
            info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
        else
            info->resolution = 1e-9;
    }
#else   /* HAVE_CLOCK_GETTIME */

     /* test gettimeofday() */
#ifdef GETTIMEOFDAY_NO_TZ
    err = gettimeofday(&tv);
#else
    err = gettimeofday(&tv, (struct timezone *)NULL);
#endif
    if (err) {
        if (raise)
            PyErr_SetFromErrno(PyExc_OSError);
        return -1;
    }
    if (_PyTime_FromTimeval(tp, &tv, raise) < 0)
        return -1;

    if (info) {
        info->implementation = "gettimeofday()";
        info->resolution = 1e-6;
        info->monotonic = 0;
        info->adjustable = 1;
    }
#endif   /* !HAVE_CLOCK_GETTIME */
#endif   /* !MS_WINDOWS */
    return 0;
}

_PyTime_t
_PyTime_GetSystemClock(void)
{
    _PyTime_t t;
    if (pygettimeofday(&t, NULL, 0) < 0) {
        /* should not happen, _PyTime_Init() checked the clock at startup */
        assert(0);

        /* use a fixed value instead of a random value from the stack */
        t = 0;
    }
    return t;
}

int
_PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
{
    return pygettimeofday(t, info, 1);
}


static int
pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise)
{
#if defined(MS_WINDOWS)
    ULONGLONG result;

    assert(info == NULL || raise);

    result = GetTickCount64();

    *tp = result * MS_TO_NS;
    if (*tp / MS_TO_NS != result) {
        if (raise) {
            _PyTime_overflow();
            return -1;
        }
        /* Hello, time traveler! */
        assert(0);
    }

    if (info) {
        DWORD timeAdjustment, timeIncrement;
        BOOL isTimeAdjustmentDisabled, ok;
        info->implementation = "GetTickCount64()";
        info->monotonic = 1;
        ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
                                     &isTimeAdjustmentDisabled);
        if (!ok) {
            PyErr_SetFromWindowsErr(0);
            return -1;
        }
        info->resolution = timeIncrement * 1e-7;
        info->adjustable = 0;
    }

#elif defined(__APPLE__)
    static mach_timebase_info_data_t timebase;
    uint64_t time;

    if (timebase.denom == 0) {
        /* According to the Technical Q&A QA1398, mach_timebase_info() cannot
           fail: https://developer.apple.com/library/mac/#qa/qa1398/ */
        (void)mach_timebase_info(&timebase);
    }

    time = mach_absolute_time();

    /* apply timebase factor */
    time *= timebase.numer;
    time /= timebase.denom;

    *tp = time;

    if (info) {
        info->implementation = "mach_absolute_time()";
        info->resolution = (double)timebase.numer / timebase.denom * 1e-9;
        info->monotonic = 1;
        info->adjustable = 0;
    }

#else
    struct timespec ts;
#ifdef CLOCK_HIGHRES
    const clockid_t clk_id = CLOCK_HIGHRES;
    const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
#else
    const clockid_t clk_id = CLOCK_MONOTONIC;
    const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
#endif

    assert(info == NULL || raise);

    if (clock_gettime(clk_id, &ts) != 0) {
        if (raise) {
            PyErr_SetFromErrno(PyExc_OSError);
            return -1;
        }
        return -1;
    }

    if (info) {
        struct timespec res;
        info->monotonic = 1;
        info->implementation = implementation;
        info->adjustable = 0;
        if (clock_getres(clk_id, &res) != 0) {
            PyErr_SetFromErrno(PyExc_OSError);
            return -1;
        }
        info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
    }
    if (_PyTime_FromTimespec(tp, &ts, raise) < 0)
        return -1;
#endif
    return 0;
}

_PyTime_t
_PyTime_GetMonotonicClock(void)
{
    _PyTime_t t;
    if (pymonotonic(&t, NULL, 0) < 0) {
        /* should not happen, _PyTime_Init() checked that monotonic clock at
           startup */
        assert(0);

        /* use a fixed value instead of a random value from the stack */
        t = 0;
    }
    return t;
}

int
_PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
    return pymonotonic(tp, info, 1);
}

int
_PyTime_Init(void)
{
    _PyTime_t t;

    /* ensure that the system clock works */
    if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0)
        return -1;

    /* ensure that the operating system provides a monotonic clock */
    if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0)
        return -1;

    /* check that _PyTime_FromSeconds() cannot overflow */
    assert(INT_MAX <= _PyTime_MAX / SEC_TO_NS);
    assert(INT_MIN >= _PyTime_MIN / SEC_TO_NS);
    return 0;
}
back to top