Staging
v0.5.1
https://github.com/torvalds/linux
Raw File
Tip revision: 18e352e4a73465349711a9324767e1b2453383e2 authored by Linus Torvalds on 28 January 2009, 18:49:30 UTC
Linux 2.6.29-rc3
Tip revision: 18e352e
s626.c
/*
  comedi/drivers/s626.c
  Sensoray s626 Comedi driver

  COMEDI - Linux Control and Measurement Device Interface
  Copyright (C) 2000 David A. Schleef <ds@schleef.org>

  Based on Sensoray Model 626 Linux driver Version 0.2
  Copyright (C) 2002-2004 Sensoray Co., Inc.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

/*
Driver: s626
Description: Sensoray 626 driver
Devices: [Sensoray] 626 (s626)
Authors: Gianluca Palli <gpalli@deis.unibo.it>,
Updated: Fri, 15 Feb 2008 10:28:42 +0000
Status: experimental

Configuration options:
  [0] - PCI bus of device (optional)
  [1] - PCI slot of device (optional)
  If bus/slot is not specified, the first supported
  PCI device found will be used.

INSN_CONFIG instructions:
  analog input:
   none

  analog output:
   none

  digital channel:
   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
   supported configuration options:
   INSN_CONFIG_DIO_QUERY
   COMEDI_INPUT
   COMEDI_OUTPUT

  encoder:
   Every channel must be configured before reading.

   Example code

   insn.insn=INSN_CONFIG;   //configuration instruction
   insn.n=1;                //number of operation (must be 1)
   insn.data=&initialvalue; //initial value loaded into encoder
                            //during configuration
   insn.subdev=5;           //encoder subdevice
   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
                                                        //to configure

   comedi_do_insn(cf,&insn); //executing configuration
*/

#include <linux/kernel.h>
#include <linux/types.h>

#include "../comedidev.h"

#include "comedi_pci.h"

#include "comedi_fc.h"
#include "s626.h"

MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
MODULE_LICENSE("GPL");

typedef struct s626_board_struct {
	const char *name;
	int ai_chans;
	int ai_bits;
	int ao_chans;
	int ao_bits;
	int dio_chans;
	int dio_banks;
	int enc_chans;
} s626_board;

static const s626_board s626_boards[] = {
	{
	      name:	"s626",
	      ai_chans:S626_ADC_CHANNELS,
	      ai_bits:	14,
	      ao_chans:S626_DAC_CHANNELS,
	      ao_bits:	13,
	      dio_chans:S626_DIO_CHANNELS,
	      dio_banks:S626_DIO_BANKS,
	      enc_chans:S626_ENCODER_CHANNELS,
		}
};

#define thisboard ((const s626_board *)dev->board_ptr)
#define PCI_VENDOR_ID_S626 0x1131
#define PCI_DEVICE_ID_S626 0x7146

static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
	{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
		0},
	{0}
};

MODULE_DEVICE_TABLE(pci, s626_pci_table);

static int s626_attach(comedi_device * dev, comedi_devconfig * it);
static int s626_detach(comedi_device * dev);

static comedi_driver driver_s626 = {
      driver_name:"s626",
      module:THIS_MODULE,
      attach:s626_attach,
      detach:s626_detach,
};

typedef struct {
	struct pci_dev *pdev;
	void *base_addr;
	int got_regions;
	short allocatedBuf;
	uint8_t ai_cmd_running;	// ai_cmd is running
	uint8_t ai_continous;	// continous aquisition
	int ai_sample_count;	// number of samples to aquire
	unsigned int ai_sample_timer;	// time between samples in
	// units of the timer
	int ai_convert_count;	// conversion counter
	unsigned int ai_convert_timer;	// time between conversion in
	// units of the timer
	uint16_t CounterIntEnabs;	//Counter interrupt enable
	//mask for MISC2 register.
	uint8_t AdcItems;	//Number of items in ADC poll
	//list.
	DMABUF RPSBuf;		//DMA buffer used to hold ADC
	//(RPS1) program.
	DMABUF ANABuf;		//DMA buffer used to receive
	//ADC data and hold DAC data.
	uint32_t *pDacWBuf;	//Pointer to logical adrs of
	//DMA buffer used to hold DAC
	//data.
	uint16_t Dacpol;	//Image of DAC polarity
	//register.
	uint8_t TrimSetpoint[12];	//Images of TrimDAC setpoints.
	//registers.
	uint16_t ChargeEnabled;	//Image of MISC2 Battery
	//Charge Enabled (0 or
	//WRMISC2_CHARGE_ENABLE).
	uint16_t WDInterval;	//Image of MISC2 watchdog
	//interval control bits.
	uint32_t I2CAdrs;	//I2C device address for
	//onboard EEPROM (board rev
	//dependent).
	//  short         I2Cards;
	lsampl_t ao_readback[S626_DAC_CHANNELS];
} s626_private;

typedef struct {
	uint16_t RDDIn;
	uint16_t WRDOut;
	uint16_t RDEdgSel;
	uint16_t WREdgSel;
	uint16_t RDCapSel;
	uint16_t WRCapSel;
	uint16_t RDCapFlg;
	uint16_t RDIntSel;
	uint16_t WRIntSel;
} dio_private;

static dio_private dio_private_A = {
      RDDIn:LP_RDDINA,
      WRDOut:LP_WRDOUTA,
      RDEdgSel:LP_RDEDGSELA,
      WREdgSel:LP_WREDGSELA,
      RDCapSel:LP_RDCAPSELA,
      WRCapSel:LP_WRCAPSELA,
      RDCapFlg:LP_RDCAPFLGA,
      RDIntSel:LP_RDINTSELA,
      WRIntSel:LP_WRINTSELA,
};

static dio_private dio_private_B = {
      RDDIn:LP_RDDINB,
      WRDOut:LP_WRDOUTB,
      RDEdgSel:LP_RDEDGSELB,
      WREdgSel:LP_WREDGSELB,
      RDCapSel:LP_RDCAPSELB,
      WRCapSel:LP_WRCAPSELB,
      RDCapFlg:LP_RDCAPFLGB,
      RDIntSel:LP_RDINTSELB,
      WRIntSel:LP_WRINTSELB,
};

static dio_private dio_private_C = {
      RDDIn:LP_RDDINC,
      WRDOut:LP_WRDOUTC,
      RDEdgSel:LP_RDEDGSELC,
      WREdgSel:LP_WREDGSELC,
      RDCapSel:LP_RDCAPSELC,
      WRCapSel:LP_WRCAPSELC,
      RDCapFlg:LP_RDCAPFLGC,
      RDIntSel:LP_RDINTSELC,
      WRIntSel:LP_WRINTSELC,
};

/* to group dio devices (48 bits mask and data are not allowed ???)
static dio_private *dio_private_word[]={
  &dio_private_A,
  &dio_private_B,
  &dio_private_C,
};
*/

#define devpriv ((s626_private *)dev->private)
#define diopriv ((dio_private *)s->private)

COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);

//ioctl routines
static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data);
/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */
static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data);
static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s);
static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
	comedi_cmd * cmd);
static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s);
static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data);
static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data);
static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data);
static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data);
static int s626_dio_set_irq(comedi_device * dev, unsigned int chan);
static int s626_dio_reset_irq(comedi_device * dev, unsigned int gruop,
	unsigned int mask);
static int s626_dio_clear_irq(comedi_device * dev);
static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data);
static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data);
static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data);
static int s626_ns_to_timer(int *nanosec, int round_mode);
static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd);
static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
	unsigned int trignum);
static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
static lsampl_t s626_ai_reg_to_uint(int data);
/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */

//end ioctl routines

//internal routines
static void s626_dio_init(comedi_device * dev);
static void ResetADC(comedi_device * dev, uint8_t * ppl);
static void LoadTrimDACs(comedi_device * dev);
static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
	uint8_t DacData);
static uint8_t I2Cread(comedi_device * dev, uint8_t addr);
static uint32_t I2Chandshake(comedi_device * dev, uint32_t val);
static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata);
static void SendDAC(comedi_device * dev, uint32_t val);
static void WriteMISC2(comedi_device * dev, uint16_t NewImage);
static void DEBItransfer(comedi_device * dev);
static uint16_t DEBIread(comedi_device * dev, uint16_t addr);
static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata);
static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
	uint16_t wdata);
static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize);

// COUNTER OBJECT ------------------------------------------------
typedef struct enc_private_struct {
	// Pointers to functions that differ for A and B counters:
	uint16_t(*GetEnable) (comedi_device * dev, struct enc_private_struct *);	//Return clock enable.
	uint16_t(*GetIntSrc) (comedi_device * dev, struct enc_private_struct *);	//Return interrupt source.
	uint16_t(*GetLoadTrig) (comedi_device * dev, struct enc_private_struct *);	//Return preload trigger source.
	uint16_t(*GetMode) (comedi_device * dev, struct enc_private_struct *);	//Return standardized operating mode.
	void (*PulseIndex) (comedi_device * dev, struct enc_private_struct *);	//Generate soft index strobe.
	void (*SetEnable) (comedi_device * dev, struct enc_private_struct *, uint16_t enab);	//Program clock enable.
	void (*SetIntSrc) (comedi_device * dev, struct enc_private_struct *, uint16_t IntSource);	//Program interrupt source.
	void (*SetLoadTrig) (comedi_device * dev, struct enc_private_struct *, uint16_t Trig);	//Program preload trigger source.
	void (*SetMode) (comedi_device * dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc);	//Program standardized operating mode.
	void (*ResetCapFlags) (comedi_device * dev, struct enc_private_struct *);	//Reset event capture flags.

	uint16_t MyCRA;		//   Address of CRA register.
	uint16_t MyCRB;		//   Address of CRB register.
	uint16_t MyLatchLsw;	//   Address of Latch least-significant-word
	//   register.
	uint16_t MyEventBits[4];	//   Bit translations for IntSrc -->RDMISC2.
} enc_private;			//counter object

#define encpriv ((enc_private *)(dev->subdevices+5)->private)

//counters routines
static void s626_timer_load(comedi_device * dev, enc_private * k, int tick);
static uint32_t ReadLatch(comedi_device * dev, enc_private * k);
static void ResetCapFlags_A(comedi_device * dev, enc_private * k);
static void ResetCapFlags_B(comedi_device * dev, enc_private * k);
static uint16_t GetMode_A(comedi_device * dev, enc_private * k);
static uint16_t GetMode_B(comedi_device * dev, enc_private * k);
static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
	uint16_t DisableIntSrc);
static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
	uint16_t DisableIntSrc);
static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab);
static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab);
static uint16_t GetEnable_A(comedi_device * dev, enc_private * k);
static uint16_t GetEnable_B(comedi_device * dev, enc_private * k);
static void SetLatchSource(comedi_device * dev, enc_private * k,
	uint16_t value);
/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ); */
static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig);
static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig);
static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k);
static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k);
static void SetIntSrc_B(comedi_device * dev, enc_private * k,
	uint16_t IntSource);
static void SetIntSrc_A(comedi_device * dev, enc_private * k,
	uint16_t IntSource);
static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k);
static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k);
/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) ; */
/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) ; */
/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ); */
/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) ; */
/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value );  */
/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k );  */
/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value );  */
/* static uint16_t GetIndexSrc( comedi_device *dev,enc_private *k );  */
static void PulseIndex_A(comedi_device * dev, enc_private * k);
static void PulseIndex_B(comedi_device * dev, enc_private * k);
static void Preload(comedi_device * dev, enc_private * k, uint32_t value);
static void CountersInit(comedi_device * dev);
//end internal routines

/////////////////////////////////////////////////////////////////////////
// Counter objects constructor.

// Counter overflow/index event flag masks for RDMISC2.
#define INDXMASK(C)		( 1 << ( ( (C) > 2 ) ? ( (C) * 2 - 1 ) : ( (C) * 2 +  4 ) ) )
#define OVERMASK(C)		( 1 << ( ( (C) > 2 ) ? ( (C) * 2 + 5 ) : ( (C) * 2 + 10 ) ) )
#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }

// Translation table to map IntSrc into equivalent RDMISC2 event flag
// bits.
//static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) };

/* enc_private; */
static enc_private enc_private_data[] = {
	{
	      GetEnable:GetEnable_A,
	      GetIntSrc:GetIntSrc_A,
	      GetLoadTrig:GetLoadTrig_A,
	      GetMode:	GetMode_A,
	      PulseIndex:PulseIndex_A,
	      SetEnable:SetEnable_A,
	      SetIntSrc:SetIntSrc_A,
	      SetLoadTrig:SetLoadTrig_A,
	      SetMode:	SetMode_A,
	      ResetCapFlags:ResetCapFlags_A,
	      MyCRA:	LP_CR0A,
	      MyCRB:	LP_CR0B,
	      MyLatchLsw:LP_CNTR0ALSW,
	      MyEventBits:EVBITS(0),
		},
	{
	      GetEnable:GetEnable_A,
	      GetIntSrc:GetIntSrc_A,
	      GetLoadTrig:GetLoadTrig_A,
	      GetMode:	GetMode_A,
	      PulseIndex:PulseIndex_A,
	      SetEnable:SetEnable_A,
	      SetIntSrc:SetIntSrc_A,
	      SetLoadTrig:SetLoadTrig_A,
	      SetMode:	SetMode_A,
	      ResetCapFlags:ResetCapFlags_A,
	      MyCRA:	LP_CR1A,
	      MyCRB:	LP_CR1B,
	      MyLatchLsw:LP_CNTR1ALSW,
	      MyEventBits:EVBITS(1),
		},
	{
	      GetEnable:GetEnable_A,
	      GetIntSrc:GetIntSrc_A,
	      GetLoadTrig:GetLoadTrig_A,
	      GetMode:	GetMode_A,
	      PulseIndex:PulseIndex_A,
	      SetEnable:SetEnable_A,
	      SetIntSrc:SetIntSrc_A,
	      SetLoadTrig:SetLoadTrig_A,
	      SetMode:	SetMode_A,
	      ResetCapFlags:ResetCapFlags_A,
	      MyCRA:	LP_CR2A,
	      MyCRB:	LP_CR2B,
	      MyLatchLsw:LP_CNTR2ALSW,
	      MyEventBits:EVBITS(2),
		},
	{
	      GetEnable:GetEnable_B,
	      GetIntSrc:GetIntSrc_B,
	      GetLoadTrig:GetLoadTrig_B,
	      GetMode:	GetMode_B,
	      PulseIndex:PulseIndex_B,
	      SetEnable:SetEnable_B,
	      SetIntSrc:SetIntSrc_B,
	      SetLoadTrig:SetLoadTrig_B,
	      SetMode:	SetMode_B,
	      ResetCapFlags:ResetCapFlags_B,
	      MyCRA:	LP_CR0A,
	      MyCRB:	LP_CR0B,
	      MyLatchLsw:LP_CNTR0BLSW,
	      MyEventBits:EVBITS(3),
		},
	{
	      GetEnable:GetEnable_B,
	      GetIntSrc:GetIntSrc_B,
	      GetLoadTrig:GetLoadTrig_B,
	      GetMode:	GetMode_B,
	      PulseIndex:PulseIndex_B,
	      SetEnable:SetEnable_B,
	      SetIntSrc:SetIntSrc_B,
	      SetLoadTrig:SetLoadTrig_B,
	      SetMode:	SetMode_B,
	      ResetCapFlags:ResetCapFlags_B,
	      MyCRA:	LP_CR1A,
	      MyCRB:	LP_CR1B,
	      MyLatchLsw:LP_CNTR1BLSW,
	      MyEventBits:EVBITS(4),
		},
	{
	      GetEnable:GetEnable_B,
	      GetIntSrc:GetIntSrc_B,
	      GetLoadTrig:GetLoadTrig_B,
	      GetMode:	GetMode_B,
	      PulseIndex:PulseIndex_B,
	      SetEnable:SetEnable_B,
	      SetIntSrc:SetIntSrc_B,
	      SetLoadTrig:SetLoadTrig_B,
	      SetMode:	SetMode_B,
	      ResetCapFlags:ResetCapFlags_B,
	      MyCRA:	LP_CR2A,
	      MyCRB:	LP_CR2B,
	      MyLatchLsw:LP_CNTR2BLSW,
	      MyEventBits:EVBITS(5),
		},
};

// enab/disable a function or test status bit(s) that are accessed
// through Main Control Registers 1 or 2.
#define MC_ENABLE( REGADRS, CTRLWORD )	writel(  ( (uint32_t)( CTRLWORD ) << 16 ) | (uint32_t)( CTRLWORD ),devpriv->base_addr+( REGADRS ) )

#define MC_DISABLE( REGADRS, CTRLWORD )	writel(  (uint32_t)( CTRLWORD ) << 16 , devpriv->base_addr+( REGADRS ) )

#define MC_TEST( REGADRS, CTRLWORD )	( ( readl(devpriv->base_addr+( REGADRS )) & CTRLWORD ) != 0 )

/* #define WR7146(REGARDS,CTRLWORD)
    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
#define WR7146(REGARDS,CTRLWORD) writel(CTRLWORD,devpriv->base_addr+(REGARDS))

/* #define RR7146(REGARDS)
    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))

#define BUGFIX_STREG(REGADRS)   ( REGADRS - 4 )

// Write a time slot control record to TSL2.
#define VECTPORT( VECTNUM )		(P_TSL2 + ( (VECTNUM) << 2 ))
#define SETVECT( VECTNUM, VECTVAL )	WR7146(VECTPORT( VECTNUM ), (VECTVAL))

// Code macros used for constructing I2C command bytes.
#define I2C_B2(ATTR,VAL)	( ( (ATTR) << 6 ) | ( (VAL) << 24 ) )
#define I2C_B1(ATTR,VAL)	( ( (ATTR) << 4 ) | ( (VAL) << 16 ) )
#define I2C_B0(ATTR,VAL)	( ( (ATTR) << 2 ) | ( (VAL) <<  8 ) )

static const comedi_lrange s626_range_table = { 2, {
			RANGE(-5, 5),
			RANGE(-10, 10),
	}
};

static int s626_attach(comedi_device * dev, comedi_devconfig * it)
{
/*   uint8_t	PollList; */
/*   uint16_t	AdcData; */
/*   uint16_t	StartVal; */
/*   uint16_t	index; */
/*   unsigned int data[16]; */
	int result;
	int i;
	int ret;
	resource_size_t resourceStart;
	dma_addr_t appdma;
	comedi_subdevice *s;
	struct pci_dev *pdev;

	if (alloc_private(dev, sizeof(s626_private)) < 0)
		return -ENOMEM;

	for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
			NULL); pdev != NULL;
		pdev = pci_get_device(PCI_VENDOR_ID_S626,
			PCI_DEVICE_ID_S626, pdev)) {
		if (it->options[0] || it->options[1]) {
			if (pdev->bus->number == it->options[0] &&
				PCI_SLOT(pdev->devfn) == it->options[1]) {
				/* matches requested bus/slot */
				break;
			}
		} else {
			/* no bus/slot specified */
			break;
		}
	}
	devpriv->pdev = pdev;

	if (pdev == NULL) {
		printk("s626_attach: Board not present!!!\n");
		return -ENODEV;
	}

	if ((result = comedi_pci_enable(pdev, "s626")) < 0) {
		printk("s626_attach: comedi_pci_enable fails\n");
		return -ENODEV;
	}
	devpriv->got_regions = 1;

	resourceStart = pci_resource_start(devpriv->pdev, 0);

	devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
	if (devpriv->base_addr == NULL) {
		printk("s626_attach: IOREMAP failed\n");
		return -ENODEV;
	}

	if (devpriv->base_addr) {
		//disable master interrupt
		writel(0, devpriv->base_addr + P_IER);

		//soft reset
		writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);

		//DMA FIXME DMA//
		DEBUG("s626_attach: DMA ALLOCATION\n");

		//adc buffer allocation
		devpriv->allocatedBuf = 0;

		if ((devpriv->ANABuf.LogicalBase =
				pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
					&appdma)) == NULL) {
			printk("s626_attach: DMA Memory mapping error\n");
			return -ENOMEM;
		}

		devpriv->ANABuf.PhysicalBase = appdma;

		DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);

		devpriv->allocatedBuf++;

		if ((devpriv->RPSBuf.LogicalBase =
				pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,
					&appdma)) == NULL) {
			printk("s626_attach: DMA Memory mapping error\n");
			return -ENOMEM;
		}

		devpriv->RPSBuf.PhysicalBase = appdma;

		DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);

		devpriv->allocatedBuf++;

	}

	dev->board_ptr = s626_boards;
	dev->board_name = thisboard->name;

	if (alloc_subdevices(dev, 6) < 0)
		return -ENOMEM;

	dev->iobase = (unsigned long)devpriv->base_addr;
	dev->irq = devpriv->pdev->irq;

	//set up interrupt handler
	if (dev->irq == 0) {
		printk(" unknown irq (bad)\n");
	} else {
		if ((ret = comedi_request_irq(dev->irq, s626_irq_handler,
					IRQF_SHARED, "s626", dev)) < 0) {
			printk(" irq not available\n");
			dev->irq = 0;
		}
	}

	DEBUG("s626_attach: -- it opts  %d,%d -- \n",
		it->options[0], it->options[1]);

	s = dev->subdevices + 0;
	/* analog input subdevice */
	dev->read_subdev = s;
	/* we support single-ended (ground) and differential */
	s->type = COMEDI_SUBD_AI;
	s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
	s->n_chan = thisboard->ai_chans;
	s->maxdata = (0xffff >> 2);
	s->range_table = &s626_range_table;
	s->len_chanlist = thisboard->ai_chans;	/* This is the maximum chanlist
						   length that the board can
						   handle */
	s->insn_config = s626_ai_insn_config;
	s->insn_read = s626_ai_insn_read;
	s->do_cmd = s626_ai_cmd;
	s->do_cmdtest = s626_ai_cmdtest;
	s->cancel = s626_ai_cancel;

	s = dev->subdevices + 1;
	/* analog output subdevice */
	s->type = COMEDI_SUBD_AO;
	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
	s->n_chan = thisboard->ao_chans;
	s->maxdata = (0x3fff);
	s->range_table = &range_bipolar10;
	s->insn_write = s626_ao_winsn;
	s->insn_read = s626_ao_rinsn;

	s = dev->subdevices + 2;
	/* digital I/O subdevice */
	s->type = COMEDI_SUBD_DIO;
	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
	s->n_chan = S626_DIO_CHANNELS;
	s->maxdata = 1;
	s->io_bits = 0xffff;
	s->private = &dio_private_A;
	s->range_table = &range_digital;
	s->insn_config = s626_dio_insn_config;
	s->insn_bits = s626_dio_insn_bits;

	s = dev->subdevices + 3;
	/* digital I/O subdevice */
	s->type = COMEDI_SUBD_DIO;
	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
	s->n_chan = 16;
	s->maxdata = 1;
	s->io_bits = 0xffff;
	s->private = &dio_private_B;
	s->range_table = &range_digital;
	s->insn_config = s626_dio_insn_config;
	s->insn_bits = s626_dio_insn_bits;

	s = dev->subdevices + 4;
	/* digital I/O subdevice */
	s->type = COMEDI_SUBD_DIO;
	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
	s->n_chan = 16;
	s->maxdata = 1;
	s->io_bits = 0xffff;
	s->private = &dio_private_C;
	s->range_table = &range_digital;
	s->insn_config = s626_dio_insn_config;
	s->insn_bits = s626_dio_insn_bits;

	s = dev->subdevices + 5;
	/* encoder (counter) subdevice */
	s->type = COMEDI_SUBD_COUNTER;
	s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
	s->n_chan = thisboard->enc_chans;
	s->private = enc_private_data;
	s->insn_config = s626_enc_insn_config;
	s->insn_read = s626_enc_insn_read;
	s->insn_write = s626_enc_insn_write;
	s->maxdata = 0xffffff;
	s->range_table = &range_unknown;

	//stop ai_command
	devpriv->ai_cmd_running = 0;

	if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
		dma_addr_t pPhysBuf;
		uint16_t chan;

		// enab DEBI and audio pins, enable I2C interface.
		MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
		// Configure DEBI operating mode.
		WR7146(P_DEBICFG, DEBI_CFG_SLAVE16	// Local bus is 16
			// bits wide.
			| (DEBI_TOUT << DEBI_CFG_TOUT_BIT)	// Declare DEBI
			// transfer timeout
			// interval.
			| DEBI_SWAP	// Set up byte lane
			// steering.
			| DEBI_CFG_INTEL);	// Intel-compatible
		// local bus (DEBI
		// never times out).
		DEBUG("s626_attach: %d debi init -- %d\n",
			DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
			DEBI_SWAP | DEBI_CFG_INTEL,
			DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
			DEBI_CFG_16Q);

		//DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ
		//| DEBI_CFG_INCQ| DEBI_CFG_16Q); //end

		// Paging is disabled.
		WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);	// Disable MMU paging.

		// Init GPIO so that ADC Start* is negated.
		WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);

		//IsBoardRevA is a boolean that indicates whether the board is
		//RevA.

		// VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
		// EEPROM ADDRESS SELECTION.  Initialize the I2C interface, which
		// is used to access the onboard serial EEPROM.  The EEPROM's I2C
		// DeviceAddress is hardwired to a value that is dependent on the
		// 626 board revision.  On all board revisions, the EEPROM stores
		// TrimDAC calibration constants for analog I/O.  On RevB and
		// higher boards, the DeviceAddress is hardwired to 0 to enable
		// the EEPROM to also store the PCI SubVendorID and SubDeviceID;
		// this is the address at which the SAA7146 expects a
		// configuration EEPROM to reside.  On RevA boards, the EEPROM
		// device address, which is hardwired to 4, prevents the SAA7146
		// from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
		// default values, instead.

		//    devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM
		// DeviceType (0xA0)
		// and DeviceAddress<<1.

		devpriv->I2CAdrs = 0xA0;	// I2C device address for onboard
		// eeprom(revb)

		// Issue an I2C ABORT command to halt any I2C operation in
		//progress and reset BUSY flag.
		WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);	// Write I2C control:
		// abort any I2C
		// activity.
		MC_ENABLE(P_MC2, MC2_UPLD_IIC);	// Invoke command
		// upload
		while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ;	// and wait for
		// upload to
		// complete.

		// Per SAA7146 data sheet, write to STATUS reg twice to reset all
		// I2C error flags.
		for (i = 0; i < 2; i++) {
			WR7146(P_I2CSTAT, I2C_CLKSEL);	// Write I2C control: reset
			// error flags.
			MC_ENABLE(P_MC2, MC2_UPLD_IIC);	// Invoke command upload
			while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;	//   and wait for
			//   upload to
			//   complete.
		}

		// Init audio interface functional attributes: set DAC/ADC serial
		// clock rates, invert DAC serial clock so that DAC data setup
		// times are satisfied, enable DAC serial clock out.
		WR7146(P_ACON2, ACON2_INIT);

		// Set up TSL1 slot list, which is used to control the
		// accumulation of ADC data: RSD1 = shift data in on SD1.  SIB_A1
		// = store data uint8_t at next available location in FB BUFFER1
		// register.
		WR7146(P_TSL1, RSD1 | SIB_A1);	// Fetch ADC high data
		// uint8_t.
		WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);	// Fetch ADC low data
		// uint8_t; end of
		// TSL1.

		// enab TSL1 slot list so that it executes all the time.
		WR7146(P_ACON1, ACON1_ADCSTART);

		// Initialize RPS registers used for ADC.

		//Physical start of RPS program.
		WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);

		WR7146(P_RPSPAGE1, 0);	// RPS program performs no
		// explicit mem writes.
		WR7146(P_RPS1_TOUT, 0);	// Disable RPS timeouts.

		// SAA7146 BUG WORKAROUND.  Initialize SAA7146 ADC interface to a
		// known state by invoking ADCs until FB BUFFER 1 register shows
		// that it is correctly receiving ADC data.  This is necessary
		// because the SAA7146 ADC interface does not start up in a
		// defined state after a PCI reset.

/*     PollList = EOPL;			// Create a simple polling */
/* 					// list for analog input */
/* 					// channel 0. */
/*     ResetADC( dev, &PollList ); */

/*     s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
/* 						  //Get initial ADC */
/* 						  //value. */

/*     StartVal = data[0]; */

/*     // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
/*     // Invoke ADCs until the new ADC value differs from the initial */
/*     // value or a timeout occurs.  The timeout protects against the */
/*     // possibility that the driver is restarting and the ADC data is a */
/*     // fixed value resulting from the applied ADC analog input being */
/*     // unusually quiet or at the rail. */

/*     for ( index = 0; index < 500; index++ ) */
/*       { */
/* 	s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
/* 	AdcData = data[0];	//ReadADC(  &AdcData ); */
/* 	if ( AdcData != StartVal ) */
/* 	  break; */
/*       } */

		// end initADC

		// init the DAC interface

		// Init Audio2's output DMAC attributes: burst length = 1 DWORD,
		// threshold = 1 DWORD.
		WR7146(P_PCI_BT_A, 0);

		// Init Audio2's output DMA physical addresses.  The protection
		// address is set to 1 DWORD past the base address so that a
		// single DWORD will be transferred each time a DMA transfer is
		// enabled.

		pPhysBuf =
			devpriv->ANABuf.PhysicalBase +
			(DAC_WDMABUF_OS * sizeof(uint32_t));

		WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);	// Buffer base adrs.
		WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));	// Protection address.

		// Cache Audio2's output DMA buffer logical address.  This is
		// where DAC data is buffered for A2 output DMA transfers.
		devpriv->pDacWBuf =
			(uint32_t *) devpriv->ANABuf.LogicalBase +
			DAC_WDMABUF_OS;

		// Audio2's output channels does not use paging.  The protection
		// violation handling bit is set so that the DMAC will
		// automatically halt and its PCI address pointer will be reset
		// when the protection address is reached.
		WR7146(P_PAGEA2_OUT, 8);

		// Initialize time slot list 2 (TSL2), which is used to control
		// the clock generation for and serialization of data to be sent
		// to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
		// execution; this permits other slots to be safely modified
		// without first turning off the TSL sequencer (which is
		// apparently impossible to do).  Also, SD3 (which is driven by a
		// pull-up resistor) is shifted in and stored to the MSB of
		// FB_BUFFER2 to be used as evidence that the slot sequence has
		// not yet finished executing.
		SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);	// Slot 0: Trap TSL
		// execution, shift 0xFF
		// into FB_BUFFER2.

		// Initialize slot 1, which is constant.  Slot 1 causes a DWORD to
		// be transferred from audio channel 2's output FIFO to the FIFO's
		// output buffer so that it can be serialized and sent to the DAC
		// during subsequent slots.  All remaining slots are dynamically
		// populated as required by the target DAC device.
		SETVECT(1, LF_A2);	// Slot 1: Fetch DWORD from Audio2's
		// output FIFO.

		// Start DAC's audio interface (TSL2) running.
		WR7146(P_ACON1, ACON1_DACSTART);

		////////////////////////////////////////////////////////

		// end init DAC interface

		// Init Trim DACs to calibrated values.  Do it twice because the
		// SAA7146 audio channel does not always reset properly and
		// sometimes causes the first few TrimDAC writes to malfunction.

		LoadTrimDACs(dev);
		LoadTrimDACs(dev);	// Insurance.

		//////////////////////////////////////////////////////////////////
		// Manually init all gate array hardware in case this is a soft
		// reset (we have no way of determining whether this is a warm or
		// cold start).  This is necessary because the gate array will
		// reset only in response to a PCI hard reset; there is no soft
		// reset function.

		// Init all DAC outputs to 0V and init all DAC setpoint and
		// polarity images.
		for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
			SetDAC(dev, chan, 0);

		// Init image of WRMISC2 Battery Charger Enabled control bit.
		// This image is used when the state of the charger control bit,
		// which has no direct hardware readback mechanism, is queried.
		devpriv->ChargeEnabled = 0;

		// Init image of watchdog timer interval in WRMISC2.  This image
		// maintains the value of the control bits of MISC2 are
		// continuously reset to zero as long as the WD timer is disabled.
		devpriv->WDInterval = 0;

		// Init Counter Interrupt enab mask for RDMISC2.  This mask is
		// applied against MISC2 when testing to determine which timer
		// events are requesting interrupt service.
		devpriv->CounterIntEnabs = 0;

		// Init counters.
		CountersInit(dev);

		// Without modifying the state of the Battery Backup enab, disable
		// the watchdog timer, set DIO channels 0-5 to operate in the
		// standard DIO (vs. counter overflow) mode, disable the battery
		// charger, and reset the watchdog interval selector to zero.
		WriteMISC2(dev, (uint16_t) (DEBIread(dev,
					LP_RDMISC2) & MISC2_BATT_ENABLE));

		// Initialize the digital I/O subsystem.
		s626_dio_init(dev);

		//enable interrupt test
		// writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER);
	}

	DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
		(uint32_t) devpriv->base_addr);

	return 1;
}

static lsampl_t s626_ai_reg_to_uint(int data)
{
	lsampl_t tempdata;

	tempdata = (data >> 18);
	if (tempdata & 0x2000)
		tempdata &= 0x1fff;
	else
		tempdata += (1 << 13);

	return tempdata;
}

/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data){ */
/*   return 0; */
/* } */

static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
{
	comedi_device *dev = d;
	comedi_subdevice *s;
	comedi_cmd *cmd;
	enc_private *k;
	unsigned long flags;
	int32_t *readaddr;
	uint32_t irqtype, irqstatus;
	int i = 0;
	sampl_t tempdata;
	uint8_t group;
	uint16_t irqbit;

	DEBUG("s626_irq_handler: interrupt request recieved!!!\n");

	if (dev->attached == 0)
		return IRQ_NONE;
	// lock to avoid race with comedi_poll
	comedi_spin_lock_irqsave(&dev->spinlock, flags);

	//save interrupt enable register state
	irqstatus = readl(devpriv->base_addr + P_IER);

	//read interrupt type
	irqtype = readl(devpriv->base_addr + P_ISR);

	//disable master interrupt
	writel(0, devpriv->base_addr + P_IER);

	//clear interrupt
	writel(irqtype, devpriv->base_addr + P_ISR);

	//do somethings
	DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);

	switch (irqtype) {
	case IRQ_RPS1:		// end_of_scan occurs

		DEBUG("s626_irq_handler: RPS1 irq detected\n");

		// manage ai subdevice
		s = dev->subdevices;
		cmd = &(s->async->cmd);

		// Init ptr to DMA buffer that holds new ADC data.  We skip the
		// first uint16_t in the buffer because it contains junk data from
		// the final ADC of the previous poll list scan.
		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;

		// get the data and hand it over to comedi
		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
			// Convert ADC data to 16-bit integer values and copy to application
			// buffer.
			tempdata = s626_ai_reg_to_uint((int)*readaddr);
			readaddr++;

			//put data into read buffer
			// comedi_buf_put(s->async, tempdata);
			if (cfc_write_to_buffer(s, tempdata) == 0)
				printk("s626_irq_handler: cfc_write_to_buffer error!\n");

			DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
				i, tempdata);
		}

		//end of scan occurs
		s->async->events |= COMEDI_CB_EOS;

		if (!(devpriv->ai_continous))
			devpriv->ai_sample_count--;
		if (devpriv->ai_sample_count <= 0) {
			devpriv->ai_cmd_running = 0;

			// Stop RPS program.
			MC_DISABLE(P_MC1, MC1_ERPS1);

			//send end of acquisition
			s->async->events |= COMEDI_CB_EOA;

			//disable master interrupt
			irqstatus = 0;
		}

		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
			DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);

			s626_dio_set_irq(dev, cmd->scan_begin_arg);

			DEBUG("s626_irq_handler: External trigger is set!!!\n");
		}
		// tell comedi that data is there
		DEBUG("s626_irq_handler: events %d\n", s->async->events);
		comedi_event(dev, s);
		break;
	case IRQ_GPIO3:	//check dio and conter interrupt

		DEBUG("s626_irq_handler: GPIO3 irq detected\n");

		// manage ai subdevice
		s = dev->subdevices;
		cmd = &(s->async->cmd);

		//s626_dio_clear_irq(dev);

		for (group = 0; group < S626_DIO_BANKS; group++) {
			irqbit = 0;
			//read interrupt type
			irqbit = DEBIread(dev,
				((dio_private *) (dev->subdevices + 2 +
						group)->private)->RDCapFlg);

			//check if interrupt is generated from dio channels
			if (irqbit) {
				s626_dio_reset_irq(dev, group, irqbit);
				DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
				if (devpriv->ai_cmd_running) {
					//check if interrupt is an ai acquisition start trigger
					if ((irqbit >> (cmd->start_arg -
								(16 * group)))
						== 1
						&& cmd->start_src == TRIG_EXT) {
						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);

						// Start executing the RPS program.
						MC_ENABLE(P_MC1, MC1_ERPS1);

						DEBUG("s626_irq_handler: aquisition start triggered!!!\n");

						if (cmd->scan_begin_src ==
							TRIG_EXT) {
							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);

							s626_dio_set_irq(dev,
								cmd->
								scan_begin_arg);

							DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
						}
					}
					if ((irqbit >> (cmd->scan_begin_arg -
								(16 * group)))
						== 1
						&& cmd->scan_begin_src ==
						TRIG_EXT) {
						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);

						// Trigger ADC scan loop start by setting RPS Signal 0.
						MC_ENABLE(P_MC2, MC2_ADC_RPS);

						DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
						if (cmd->convert_src ==
							TRIG_EXT) {

							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);

							devpriv->
								ai_convert_count
								=
								cmd->
								chanlist_len;

							s626_dio_set_irq(dev,
								cmd->
								convert_arg);

							DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
						}

						if (cmd->convert_src ==
							TRIG_TIMER) {
							k = &encpriv[5];
							devpriv->
								ai_convert_count
								=
								cmd->
								chanlist_len;
							k->SetEnable(dev, k,
								CLKENAB_ALWAYS);
						}
					}
					if ((irqbit >> (cmd->convert_arg -
								(16 * group)))
						== 1
						&& cmd->convert_src ==
						TRIG_EXT) {
						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);

						// Trigger ADC scan loop start by setting RPS Signal 0.
						MC_ENABLE(P_MC2, MC2_ADC_RPS);

						DEBUG("s626_irq_handler: adc convert triggered!!!\n");

						devpriv->ai_convert_count--;

						if (devpriv->ai_convert_count >
							0) {

							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);

							s626_dio_set_irq(dev,
								cmd->
								convert_arg);

							DEBUG("s626_irq_handler: External trigger is set!!!\n");
						}
					}
				}
				break;
			}
		}

		//read interrupt type
		irqbit = DEBIread(dev, LP_RDMISC2);

		//check interrupt on counters
		DEBUG("s626_irq_handler: check counters interrupt %d\n",
			irqbit);

		if (irqbit & IRQ_COINT1A) {
			DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
			k = &encpriv[0];

			//clear interrupt capture flag
			k->ResetCapFlags(dev, k);
		}
		if (irqbit & IRQ_COINT2A) {
			DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
			k = &encpriv[1];

			//clear interrupt capture flag
			k->ResetCapFlags(dev, k);
		}
		if (irqbit & IRQ_COINT3A) {
			DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
			k = &encpriv[2];

			//clear interrupt capture flag
			k->ResetCapFlags(dev, k);
		}
		if (irqbit & IRQ_COINT1B) {
			DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
			k = &encpriv[3];

			//clear interrupt capture flag
			k->ResetCapFlags(dev, k);
		}
		if (irqbit & IRQ_COINT2B) {
			DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
			k = &encpriv[4];

			//clear interrupt capture flag
			k->ResetCapFlags(dev, k);

			if (devpriv->ai_convert_count > 0) {
				devpriv->ai_convert_count--;
				if (devpriv->ai_convert_count == 0)
					k->SetEnable(dev, k, CLKENAB_INDEX);

				if (cmd->convert_src == TRIG_TIMER) {
					DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);

					// Trigger ADC scan loop start by setting RPS Signal 0.
					MC_ENABLE(P_MC2, MC2_ADC_RPS);
				}
			}
		}
		if (irqbit & IRQ_COINT3B) {
			DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
			k = &encpriv[5];

			//clear interrupt capture flag
			k->ResetCapFlags(dev, k);

			if (cmd->scan_begin_src == TRIG_TIMER) {
				DEBUG("s626_irq_handler: scan timer trigger!!!\n");

				// Trigger ADC scan loop start by setting RPS Signal 0.
				MC_ENABLE(P_MC2, MC2_ADC_RPS);
			}

			if (cmd->convert_src == TRIG_TIMER) {
				DEBUG("s626_irq_handler: convert timer trigger is set\n");
				k = &encpriv[4];
				devpriv->ai_convert_count = cmd->chanlist_len;
				k->SetEnable(dev, k, CLKENAB_ALWAYS);
			}
		}
	}

	//enable interrupt
	writel(irqstatus, devpriv->base_addr + P_IER);

	DEBUG("s626_irq_handler: exit interrupt service routine.\n");

	comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
	return IRQ_HANDLED;
}

static int s626_detach(comedi_device * dev)
{
	if (devpriv) {
		//stop ai_command
		devpriv->ai_cmd_running = 0;

		if (devpriv->base_addr) {
			//interrupt mask
			WR7146(P_IER, 0);	// Disable master interrupt.
			WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1);	// Clear board's IRQ status flag.

			// Disable the watchdog timer and battery charger.
			WriteMISC2(dev, 0);

			// Close all interfaces on 7146 device.
			WR7146(P_MC1, MC1_SHUTDOWN);
			WR7146(P_ACON1, ACON1_BASE);

			CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
			CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
		}

		if (dev->irq) {
			comedi_free_irq(dev->irq, dev);
		}

		if (devpriv->base_addr) {
			iounmap(devpriv->base_addr);
		}

		if (devpriv->pdev) {
			if (devpriv->got_regions) {
				comedi_pci_disable(devpriv->pdev);
			}
			pci_dev_put(devpriv->pdev);
		}
	}

	DEBUG("s626_detach: S626 detached!\n");

	return 0;
}

/*
 * this functions build the RPS program for hardware driven acquistion
 */
void ResetADC(comedi_device * dev, uint8_t * ppl)
{
	register uint32_t *pRPS;
	uint32_t JmpAdrs;
	uint16_t i;
	uint16_t n;
	uint32_t LocalPPL;
	comedi_cmd *cmd = &(dev->subdevices->async->cmd);

	// Stop RPS program in case it is currently running.
	MC_DISABLE(P_MC1, MC1_ERPS1);

	// Set starting logical address to write RPS commands.
	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;

	// Initialize RPS instruction pointer.
	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);

	// Construct RPS program in RPSBuf DMA buffer

	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
		DEBUG("ResetADC: scan_begin pause inserted\n");
		// Wait for Start trigger.
		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
	}
	// SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
	// because the first RPS DEBI Write following a non-RPS DEBI write
	// seems to always fail.  If we don't do this dummy write, the ADC
	// gain might not be set to the value required for the first slot in
	// the poll list; the ADC gain would instead remain unchanged from
	// the previously programmed value.
	*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	// Write DEBI Write command
	// and address to shadow RAM.
	*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
	*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	// Write DEBI immediate data
	// to shadow RAM:
	*pRPS++ = GSEL_BIPOLAR5V;	// arbitrary immediate data
	// value.
	*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	// Reset "shadow RAM
	// uploaded" flag.
	*pRPS++ = RPS_UPLOAD | RPS_DEBI;	// Invoke shadow RAM upload.
	*pRPS++ = RPS_PAUSE | RPS_DEBI;	// Wait for shadow upload to finish.

	// Digitize all slots in the poll list. This is implemented as a
	// for loop to limit the slot count to 16 in case the application
	// forgot to set the EOPL flag in the final slot.
	for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
		// Convert application's poll list item to private board class
		// format.  Each app poll list item is an uint8_t with form
		// (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
		// +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
		LocalPPL =
			(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
			GSEL_BIPOLAR10V);

		// Switch ADC analog gain.
		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	// Write DEBI command
		// and address to
		// shadow RAM.
		*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	// Write DEBI
		// immediate data to
		// shadow RAM.
		*pRPS++ = LocalPPL;
		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	// Reset "shadow RAM uploaded"
		// flag.
		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	// Invoke shadow RAM upload.
		*pRPS++ = RPS_PAUSE | RPS_DEBI;	// Wait for shadow upload to
		// finish.

		// Select ADC analog input channel.
		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	// Write DEBI command
		// and address to
		// shadow RAM.
		*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	// Write DEBI
		// immediate data to
		// shadow RAM.
		*pRPS++ = LocalPPL;
		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	// Reset "shadow RAM uploaded"
		// flag.
		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	// Invoke shadow RAM upload.
		*pRPS++ = RPS_PAUSE | RPS_DEBI;	// Wait for shadow upload to
		// finish.

		// Delay at least 10 microseconds for analog input settling.
		// Instead of padding with NOPs, we use RPS_JUMP instructions
		// here; this allows us to produce a longer delay than is
		// possible with NOPs because each RPS_JUMP flushes the RPS'
		// instruction prefetch pipeline.
		JmpAdrs =
			(uint32_t) devpriv->RPSBuf.PhysicalBase +
			(uint32_t) ((unsigned long)pRPS -
			(unsigned long)devpriv->RPSBuf.LogicalBase);
		for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
			JmpAdrs += 8;	// Repeat to implement time delay:
			*pRPS++ = RPS_JUMP;	// Jump to next RPS instruction.
			*pRPS++ = JmpAdrs;
		}

		if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
			DEBUG("ResetADC: convert pause inserted\n");
			// Wait for Start trigger.
			*pRPS++ = RPS_PAUSE | RPS_SIGADC;
			*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
		}
		// Start ADC by pulsing GPIO1.
		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	// Begin ADC Start pulse.
		*pRPS++ = GPIO_BASE | GPIO1_LO;
		*pRPS++ = RPS_NOP;
		// VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	// End ADC Start pulse.
		*pRPS++ = GPIO_BASE | GPIO1_HI;

		// Wait for ADC to complete (GPIO2 is asserted high when ADC not
		// busy) and for data from previous conversion to shift into FB
		// BUFFER 1 register.
		*pRPS++ = RPS_PAUSE | RPS_GPIO2;	// Wait for ADC done.

		// Transfer ADC data from FB BUFFER 1 register to DMA buffer.
		*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
		*pRPS++ =
			(uint32_t) devpriv->ANABuf.PhysicalBase +
			(devpriv->AdcItems << 2);

		// If this slot's EndOfPollList flag is set, all channels have
		// now been processed.
		if (*ppl++ & EOPL) {
			devpriv->AdcItems++;	// Adjust poll list item count.
			break;	// Exit poll list processing loop.
		}
	}
	DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);

	// VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
	// ADC to stabilize for 2 microseconds before starting the final
	// (dummy) conversion.  This delay is necessary to allow sufficient
	// time between last conversion finished and the start of the dummy
	// conversion.  Without this delay, the last conversion's data value
	// is sometimes set to the previous conversion's data value.
	for (n = 0; n < (2 * RPSCLK_PER_US); n++)
		*pRPS++ = RPS_NOP;

	// Start a dummy conversion to cause the data from the last
	// conversion of interest to be shifted in.
	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	// Begin ADC Start pulse.
	*pRPS++ = GPIO_BASE | GPIO1_LO;
	*pRPS++ = RPS_NOP;
	// VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE.
	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	// End ADC Start pulse.
	*pRPS++ = GPIO_BASE | GPIO1_HI;

	// Wait for the data from the last conversion of interest to arrive
	// in FB BUFFER 1 register.
	*pRPS++ = RPS_PAUSE | RPS_GPIO2;	// Wait for ADC done.

	// Transfer final ADC data from FB BUFFER 1 register to DMA buffer.
	*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);	//
	*pRPS++ =
		(uint32_t) devpriv->ANABuf.PhysicalBase +
		(devpriv->AdcItems << 2);

	// Indicate ADC scan loop is finished.
	// *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ;  // Signal ReadADC() that scan is done.

	//invoke interrupt
	if (devpriv->ai_cmd_running == 1) {
		DEBUG("ResetADC: insert irq in ADC RPS task\n");
		*pRPS++ = RPS_IRQ;
	}
	// Restart RPS program at its beginning.
	*pRPS++ = RPS_JUMP;	// Branch to start of RPS program.
	*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;

	// End of RPS program build
	// ------------------------------------------------------------
}

/* TO COMPLETE, IF NECESSARY */
static int s626_ai_insn_config(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data)
{

	return -EINVAL;
}

/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data) */
/* { */
/*   register uint8_t	i; */
/*   register int32_t	*readaddr; */

/*   DEBUG("as626_ai_rinsn: ai_rinsn enter \n");  */

/*   // Trigger ADC scan loop start by setting RPS Signal 0. */
/*   MC_ENABLE( P_MC2, MC2_ADC_RPS ); */

/*   // Wait until ADC scan loop is finished (RPS Signal 0 reset). */
/*   while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */

/*   // Init ptr to DMA buffer that holds new ADC data.  We skip the */
/*   // first uint16_t in the buffer because it contains junk data from */
/*   // the final ADC of the previous poll list scan. */
/*   readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */

/*   // Convert ADC data to 16-bit integer values and copy to application */
/*   // buffer.	 */
/*   for ( i = 0; i < devpriv->AdcItems; i++ ) { */
/*     *data = s626_ai_reg_to_uint( *readaddr++ ); */
/*     DEBUG("s626_ai_rinsn: data %d \n",*data); */
/*     data++; */
/*   } */

/*   DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
/*   return i; */
/* } */

static int s626_ai_insn_read(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data)
{
	uint16_t chan = CR_CHAN(insn->chanspec);
	uint16_t range = CR_RANGE(insn->chanspec);
	uint16_t AdcSpec = 0;
	uint32_t GpioImage;
	int n;

/*   //interrupt call test  */
/*   writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); //Writing a logical 1 */
/* 					     //into any of the RPS_PSR */
/* 					     //bits causes the */
/* 					     //corresponding interrupt */
/* 					     //to be generated if */
/* 					     //enabled */

	DEBUG("s626_ai_insn_read: entering\n");

	// Convert application's ADC specification into form
	// appropriate for register programming.
	if (range == 0)
		AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
	else
		AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);

	// Switch ADC analog gain.
	DEBIwrite(dev, LP_GSEL, AdcSpec);	// Set gain.

	// Select ADC analog input channel.
	DEBIwrite(dev, LP_ISEL, AdcSpec);	// Select channel.

	for (n = 0; n < insn->n; n++) {

		// Delay 10 microseconds for analog input settling.
		comedi_udelay(10);

		// Start ADC by pulsing GPIO1 low.
		GpioImage = RR7146(P_GPIO);
		// Assert ADC Start command
		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
		//   and stretch it out.
		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
		// Negate ADC Start command.
		WR7146(P_GPIO, GpioImage | GPIO1_HI);

		// Wait for ADC to complete (GPIO2 is asserted high when
		// ADC not busy) and for data from previous conversion to
		// shift into FB BUFFER 1 register.

		// Wait for ADC done.
		while (!(RR7146(P_PSR) & PSR_GPIO2)) ;

		// Fetch ADC data.
		if (n != 0)
			data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));

		// Allow the ADC to stabilize for 4 microseconds before
		// starting the next (final) conversion.  This delay is
		// necessary to allow sufficient time between last
		// conversion finished and the start of the next
		// conversion.  Without this delay, the last conversion's
		// data value is sometimes set to the previous
		// conversion's data value.
		comedi_udelay(4);
	}

	// Start a dummy conversion to cause the data from the
	// previous conversion to be shifted in.
	GpioImage = RR7146(P_GPIO);

	//Assert ADC Start command
	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
	//   and stretch it out.
	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
	// Negate ADC Start command.
	WR7146(P_GPIO, GpioImage | GPIO1_HI);

	// Wait for the data to arrive in FB BUFFER 1 register.

	// Wait for ADC done.
	while (!(RR7146(P_PSR) & PSR_GPIO2)) ;

	// Fetch ADC data from audio interface's input shift
	// register.

	// Fetch ADC data.
	if (n != 0)
		data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));

	DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);

	return n;
}

static int s626_ai_load_polllist(uint8_t * ppl, comedi_cmd * cmd)
{

	int n;

	for (n = 0; n < cmd->chanlist_len; n++) {
		if (CR_RANGE((cmd->chanlist)[n]) == 0)
			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
		else
			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
	}
	ppl[n - 1] |= EOPL;

	return n;
}

static int s626_ai_inttrig(comedi_device * dev, comedi_subdevice * s,
	unsigned int trignum)
{
	if (trignum != 0)
		return -EINVAL;

	DEBUG("s626_ai_inttrig: trigger adc start...");

	// Start executing the RPS program.
	MC_ENABLE(P_MC1, MC1_ERPS1);

	s->async->inttrig = NULL;

	DEBUG(" done\n");

	return 1;
}

/*  TO COMPLETE  */
static int s626_ai_cmd(comedi_device * dev, comedi_subdevice * s)
{

	uint8_t ppl[16];
	comedi_cmd *cmd = &s->async->cmd;
	enc_private *k;
	int tick;

	DEBUG("s626_ai_cmd: entering command function\n");

	if (devpriv->ai_cmd_running) {
		printk("s626_ai_cmd: Another ai_cmd is running %d\n",
			dev->minor);
		return -EBUSY;
	}
	//disable interrupt
	writel(0, devpriv->base_addr + P_IER);

	//clear interrupt request
	writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);

	//clear any pending interrupt
	s626_dio_clear_irq(dev);
	//  s626_enc_clear_irq(dev);

	//reset ai_cmd_running flag
	devpriv->ai_cmd_running = 0;

	// test if cmd is valid
	if (cmd == NULL) {
		DEBUG("s626_ai_cmd: NULL command\n");
		return -EINVAL;
	} else {
		DEBUG("s626_ai_cmd: command recieved!!!\n");
	}

	if (dev->irq == 0) {
		comedi_error(dev,
			"s626_ai_cmd: cannot run command without an irq");
		return -EIO;
	}

	s626_ai_load_polllist(ppl, cmd);
	devpriv->ai_cmd_running = 1;
	devpriv->ai_convert_count = 0;

	switch (cmd->scan_begin_src) {
	case TRIG_FOLLOW:
		break;
	case TRIG_TIMER:
		// set a conter to generate adc trigger at scan_begin_arg interval
		k = &encpriv[5];
		tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
			cmd->flags & TRIG_ROUND_MASK);

		//load timer value and enable interrupt
		s626_timer_load(dev, k, tick);
		k->SetEnable(dev, k, CLKENAB_ALWAYS);

		DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
			tick);

		break;
	case TRIG_EXT:
		// set the digital line and interrupt for scan trigger
		if (cmd->start_src != TRIG_EXT)
			s626_dio_set_irq(dev, cmd->scan_begin_arg);

		DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");

		break;
	}

	switch (cmd->convert_src) {
	case TRIG_NOW:
		break;
	case TRIG_TIMER:
		// set a conter to generate adc trigger at convert_arg interval
		k = &encpriv[4];
		tick = s626_ns_to_timer((int *)&cmd->convert_arg,
			cmd->flags & TRIG_ROUND_MASK);

		//load timer value and enable interrupt
		s626_timer_load(dev, k, tick);
		k->SetEnable(dev, k, CLKENAB_INDEX);

		DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
		break;
	case TRIG_EXT:
		// set the digital line and interrupt for convert trigger
		if (cmd->scan_begin_src != TRIG_EXT
			&& cmd->start_src == TRIG_EXT)
			s626_dio_set_irq(dev, cmd->convert_arg);

		DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");

		break;
	}

	switch (cmd->stop_src) {
	case TRIG_COUNT:
		// data arrives as one packet
		devpriv->ai_sample_count = cmd->stop_arg;
		devpriv->ai_continous = 0;
		break;
	case TRIG_NONE:
		// continous aquisition
		devpriv->ai_continous = 1;
		devpriv->ai_sample_count = 0;
		break;
	}

	ResetADC(dev, ppl);

	switch (cmd->start_src) {
	case TRIG_NOW:
		// Trigger ADC scan loop start by setting RPS Signal 0.
		// MC_ENABLE( P_MC2, MC2_ADC_RPS );

		// Start executing the RPS program.
		MC_ENABLE(P_MC1, MC1_ERPS1);

		DEBUG("s626_ai_cmd: ADC triggered\n");
		s->async->inttrig = NULL;
		break;
	case TRIG_EXT:
		//configure DIO channel for acquisition trigger
		s626_dio_set_irq(dev, cmd->start_arg);

		DEBUG("s626_ai_cmd: External start trigger is set!!!\n");

		s->async->inttrig = NULL;
		break;
	case TRIG_INT:
		s->async->inttrig = s626_ai_inttrig;
		break;
	}

	//enable interrupt
	writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);

	DEBUG("s626_ai_cmd: command function terminated\n");

	return 0;
}

static int s626_ai_cmdtest(comedi_device * dev, comedi_subdevice * s,
	comedi_cmd * cmd)
{
	int err = 0;
	int tmp;

	/* cmdtest tests a particular command to see if it is valid.  Using
	 * the cmdtest ioctl, a user can create a valid cmd and then have it
	 * executes by the cmd ioctl.
	 *
	 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
	 * command passes. */

	/* step 1: make sure trigger sources are trivially valid */

	tmp = cmd->start_src;
	cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
	if (!cmd->start_src || tmp != cmd->start_src)
		err++;

	tmp = cmd->scan_begin_src;
	cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
		err++;

	tmp = cmd->convert_src;
	cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
	if (!cmd->convert_src || tmp != cmd->convert_src)
		err++;

	tmp = cmd->scan_end_src;
	cmd->scan_end_src &= TRIG_COUNT;
	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
		err++;

	tmp = cmd->stop_src;
	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
	if (!cmd->stop_src || tmp != cmd->stop_src)
		err++;

	if (err)
		return 1;

	/* step 2: make sure trigger sources are unique and mutually
	   compatible */

	/* note that mutual compatiblity is not an issue here */
	if (cmd->scan_begin_src != TRIG_TIMER &&
		cmd->scan_begin_src != TRIG_EXT
		&& cmd->scan_begin_src != TRIG_FOLLOW)
		err++;
	if (cmd->convert_src != TRIG_TIMER &&
		cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
		err++;
	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
		err++;

	if (err)
		return 2;

	/* step 3: make sure arguments are trivially compatible */

	if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
		cmd->start_arg = 0;
		err++;
	}

	if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) {
		cmd->start_arg = 0;
		err++;
	}

	if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
		cmd->start_arg = 39;
		err++;
	}

	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) {
		cmd->scan_begin_arg = 0;
		err++;
	}

	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
		cmd->scan_begin_arg = 39;
		err++;
	}

	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) {
		cmd->convert_arg = 0;
		err++;
	}

	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
		cmd->convert_arg = 39;
		err++;
	}
#define MAX_SPEED	200000	/* in nanoseconds */
#define MIN_SPEED	2000000000	/* in nanoseconds */

	if (cmd->scan_begin_src == TRIG_TIMER) {
		if (cmd->scan_begin_arg < MAX_SPEED) {
			cmd->scan_begin_arg = MAX_SPEED;
			err++;
		}
		if (cmd->scan_begin_arg > MIN_SPEED) {
			cmd->scan_begin_arg = MIN_SPEED;
			err++;
		}
	} else {
		/* external trigger */
		/* should be level/edge, hi/lo specification here */
		/* should specify multiple external triggers */
/*     if(cmd->scan_begin_arg>9){ */
/*       cmd->scan_begin_arg=9; */
/*       err++; */
/*     } */
	}
	if (cmd->convert_src == TRIG_TIMER) {
		if (cmd->convert_arg < MAX_SPEED) {
			cmd->convert_arg = MAX_SPEED;
			err++;
		}
		if (cmd->convert_arg > MIN_SPEED) {
			cmd->convert_arg = MIN_SPEED;
			err++;
		}
	} else {
		/* external trigger */
		/* see above */
/*     if(cmd->convert_arg>9){ */
/*       cmd->convert_arg=9; */
/*       err++; */
/*     } */
	}

	if (cmd->scan_end_arg != cmd->chanlist_len) {
		cmd->scan_end_arg = cmd->chanlist_len;
		err++;
	}
	if (cmd->stop_src == TRIG_COUNT) {
		if (cmd->stop_arg > 0x00ffffff) {
			cmd->stop_arg = 0x00ffffff;
			err++;
		}
	} else {
		/* TRIG_NONE */
		if (cmd->stop_arg != 0) {
			cmd->stop_arg = 0;
			err++;
		}
	}

	if (err)
		return 3;

	/* step 4: fix up any arguments */

	if (cmd->scan_begin_src == TRIG_TIMER) {
		tmp = cmd->scan_begin_arg;
		s626_ns_to_timer((int *)&cmd->scan_begin_arg,
			cmd->flags & TRIG_ROUND_MASK);
		if (tmp != cmd->scan_begin_arg)
			err++;
	}
	if (cmd->convert_src == TRIG_TIMER) {
		tmp = cmd->convert_arg;
		s626_ns_to_timer((int *)&cmd->convert_arg,
			cmd->flags & TRIG_ROUND_MASK);
		if (tmp != cmd->convert_arg)
			err++;
		if (cmd->scan_begin_src == TRIG_TIMER &&
			cmd->scan_begin_arg <
			cmd->convert_arg * cmd->scan_end_arg) {
			cmd->scan_begin_arg =
				cmd->convert_arg * cmd->scan_end_arg;
			err++;
		}
	}

	if (err)
		return 4;

	return 0;
}

static int s626_ai_cancel(comedi_device * dev, comedi_subdevice * s)
{
	// Stop RPS program in case it is currently running.
	MC_DISABLE(P_MC1, MC1_ERPS1);

	//disable master interrupt
	writel(0, devpriv->base_addr + P_IER);

	devpriv->ai_cmd_running = 0;

	return 0;
}

/* This function doesn't require a particular form, this is just what
 * happens to be used in some of the drivers.  It should convert ns
 * nanoseconds to a counter value suitable for programming the device.
 * Also, it should adjust ns so that it cooresponds to the actual time
 * that the device will use. */
static int s626_ns_to_timer(int *nanosec, int round_mode)
{
	int divider, base;

	base = 500;		//2MHz internal clock

	switch (round_mode) {
	case TRIG_ROUND_NEAREST:
	default:
		divider = (*nanosec + base / 2) / base;
		break;
	case TRIG_ROUND_DOWN:
		divider = (*nanosec) / base;
		break;
	case TRIG_ROUND_UP:
		divider = (*nanosec + base - 1) / base;
		break;
	}

	*nanosec = base * divider;
	return divider - 1;
}

static int s626_ao_winsn(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data)
{

	int i;
	uint16_t chan = CR_CHAN(insn->chanspec);
	int16_t dacdata;

	for (i = 0; i < insn->n; i++) {
		dacdata = (int16_t) data[i];
		devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
		dacdata -= (0x1fff);

		SetDAC(dev, chan, dacdata);
	}

	return i;
}

static int s626_ao_rinsn(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data)
{
	int i;

	for (i = 0; i < insn->n; i++) {
		data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
	}

	return i;
}

/////////////////////////////////////////////////////////////////////
///////////////  DIGITAL I/O FUNCTIONS  /////////////////////////////
/////////////////////////////////////////////////////////////////////
// All DIO functions address a group of DIO channels by means of
// "group" argument.  group may be 0, 1 or 2, which correspond to DIO
// ports A, B and C, respectively.
/////////////////////////////////////////////////////////////////////

static void s626_dio_init(comedi_device * dev)
{
	uint16_t group;
	comedi_subdevice *s;

	// Prepare to treat writes to WRCapSel as capture disables.
	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);

	// For each group of sixteen channels ...
	for (group = 0; group < S626_DIO_BANKS; group++) {
		s = dev->subdevices + 2 + group;
		DEBIwrite(dev, diopriv->WRIntSel, 0);	// Disable all interrupts.
		DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF);	// Disable all event
		// captures.
		DEBIwrite(dev, diopriv->WREdgSel, 0);	// Init all DIOs to
		// default edge
		// polarity.
		DEBIwrite(dev, diopriv->WRDOut, 0);	// Program all outputs
		// to inactive state.
	}
	DEBUG("s626_dio_init: DIO initialized \n");
}

/* DIO devices are slightly special.  Although it is possible to
 * implement the insn_read/insn_write interface, it is much more
 * useful to applications if you implement the insn_bits interface.
 * This allows packed reading/writing of the DIO channels.  The comedi
 * core can convert between insn_bits and insn_read/write */

static int s626_dio_insn_bits(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data)
{

	/* Length of data must be 2 (mask and new data, see below) */
	if (insn->n == 0) {
		return 0;
	}
	if (insn->n != 2) {
		printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
		return -EINVAL;
	}

	/*
	 * The insn data consists of a mask in data[0] and the new data in
	 * data[1]. The mask defines which bits we are concerning about.
	 * The new data must be anded with the mask.  Each channel
	 * corresponds to a bit.
	 */
	if (data[0]) {
		/* Check if requested ports are configured for output */
		if ((s->io_bits & data[0]) != data[0])
			return -EIO;

		s->state &= ~data[0];
		s->state |= data[0] & data[1];

		/* Write out the new digital output lines */

		DEBIwrite(dev, diopriv->WRDOut, s->state);
	}
	data[1] = DEBIread(dev, diopriv->RDDIn);

	return 2;
}

static int s626_dio_insn_config(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data)
{

	switch (data[0]) {
	case INSN_CONFIG_DIO_QUERY:
		data[1] =
			(s->io_bits & (1 << CR_CHAN(insn->
					chanspec))) ? COMEDI_OUTPUT :
			COMEDI_INPUT;
		return insn->n;
		break;
	case COMEDI_INPUT:
		s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
		break;
	case COMEDI_OUTPUT:
		s->io_bits |= 1 << CR_CHAN(insn->chanspec);
		break;
	default:
		return -EINVAL;
		break;
	}
	DEBIwrite(dev, diopriv->WRDOut, s->io_bits);

	return 1;
}

static int s626_dio_set_irq(comedi_device * dev, unsigned int chan)
{
	unsigned int group;
	unsigned int bitmask;
	unsigned int status;

	//select dio bank
	group = chan / 16;
	bitmask = 1 << (chan - (16 * group));
	DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
		chan - (16 * group), group);

	//set channel to capture positive edge
	status = DEBIread(dev,
		((dio_private *) (dev->subdevices + 2 +
				group)->private)->RDEdgSel);
	DEBIwrite(dev,
		((dio_private *) (dev->subdevices + 2 +
				group)->private)->WREdgSel, bitmask | status);

	//enable interrupt on selected channel
	status = DEBIread(dev,
		((dio_private *) (dev->subdevices + 2 +
				group)->private)->RDIntSel);
	DEBIwrite(dev,
		((dio_private *) (dev->subdevices + 2 +
				group)->private)->WRIntSel, bitmask | status);

	//enable edge capture write command
	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);

	//enable edge capture on selected channel
	status = DEBIread(dev,
		((dio_private *) (dev->subdevices + 2 +
				group)->private)->RDCapSel);
	DEBIwrite(dev,
		((dio_private *) (dev->subdevices + 2 +
				group)->private)->WRCapSel, bitmask | status);

	return 0;
}

static int s626_dio_reset_irq(comedi_device * dev, unsigned int group,
	unsigned int mask)
{
	DEBUG("s626_dio_reset_irq: disable  interrupt on dio channel %d group %d\n", mask, group);

	//disable edge capture write command
	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);

	//enable edge capture on selected channel
	DEBIwrite(dev,
		((dio_private *) (dev->subdevices + 2 +
				group)->private)->WRCapSel, mask);

	return 0;
}

static int s626_dio_clear_irq(comedi_device * dev)
{
	unsigned int group;

	//disable edge capture write command
	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);

	for (group = 0; group < S626_DIO_BANKS; group++) {
		//clear pending events and interrupt
		DEBIwrite(dev,
			((dio_private *) (dev->subdevices + 2 +
					group)->private)->WRCapSel, 0xffff);
	}

	return 0;
}

/* Now this function initializes the value of the counter (data[0])
   and set the subdevice. To complete with trigger and interrupt
   configuration */
static int s626_enc_insn_config(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data)
{
	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	// Preload upon
		// index.
		(INDXSRC_SOFT << BF_INDXSRC) |	// Disable hardware index.
		(CLKSRC_COUNTER << BF_CLKSRC) |	// Operating mode is Counter.
		(CLKPOL_POS << BF_CLKPOL) |	// Active high clock.
		//( CNTDIR_UP << BF_CLKPOL ) |      // Count direction is Down.
		(CLKMULT_1X << BF_CLKMULT) |	// Clock multiplier is 1x.
		(CLKENAB_INDEX << BF_CLKENAB);
	/*   uint16_t DisableIntSrc=TRUE; */
	// uint32_t Preloadvalue;              //Counter initial value
	uint16_t valueSrclatch = LATCHSRC_AB_READ;
	uint16_t enab = CLKENAB_ALWAYS;
	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];

	DEBUG("s626_enc_insn_config: encoder config\n");

	//  (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]);

	k->SetMode(dev, k, Setup, TRUE);
	Preload(dev, k, *(insn->data));
	k->PulseIndex(dev, k);
	SetLatchSource(dev, k, valueSrclatch);
	k->SetEnable(dev, k, (uint16_t) (enab != 0));

	return insn->n;
}

static int s626_enc_insn_read(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data)
{

	int n;
	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];

	DEBUG("s626_enc_insn_read: encoder read channel %d \n",
		CR_CHAN(insn->chanspec));

	for (n = 0; n < insn->n; n++)
		data[n] = ReadLatch(dev, k);

	DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);

	return n;
}

static int s626_enc_insn_write(comedi_device * dev, comedi_subdevice * s,
	comedi_insn * insn, lsampl_t * data)
{

	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];

	DEBUG("s626_enc_insn_write: encoder write channel %d \n",
		CR_CHAN(insn->chanspec));

	// Set the preload register
	Preload(dev, k, data[0]);

	// Software index pulse forces the preload register to load
	// into the counter
	k->SetLoadTrig(dev, k, 0);
	k->PulseIndex(dev, k);
	k->SetLoadTrig(dev, k, 2);

	DEBUG("s626_enc_insn_write: End encoder write\n");

	return 1;
}

static void s626_timer_load(comedi_device * dev, enc_private * k, int tick)
{
	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	// Preload upon
		// index.
		(INDXSRC_SOFT << BF_INDXSRC) |	// Disable hardware index.
		(CLKSRC_TIMER << BF_CLKSRC) |	// Operating mode is Timer.
		(CLKPOL_POS << BF_CLKPOL) |	// Active high clock.
		(CNTDIR_DOWN << BF_CLKPOL) |	// Count direction is Down.
		(CLKMULT_1X << BF_CLKMULT) |	// Clock multiplier is 1x.
		(CLKENAB_INDEX << BF_CLKENAB);
	uint16_t valueSrclatch = LATCHSRC_A_INDXA;
	//  uint16_t enab=CLKENAB_ALWAYS;

	k->SetMode(dev, k, Setup, FALSE);

	// Set the preload register
	Preload(dev, k, tick);

	// Software index pulse forces the preload register to load
	// into the counter
	k->SetLoadTrig(dev, k, 0);
	k->PulseIndex(dev, k);

	//set reload on counter overflow
	k->SetLoadTrig(dev, k, 1);

	//set interrupt on overflow
	k->SetIntSrc(dev, k, INTSRC_OVER);

	SetLatchSource(dev, k, valueSrclatch);
	//  k->SetEnable(dev,k,(uint16_t)(enab != 0));
}

///////////////////////////////////////////////////////////////////////
/////////////////////  DAC FUNCTIONS /////////////////////////////////
///////////////////////////////////////////////////////////////////////

// Slot 0 base settings.
#define VECT0	( XSD2 | RSD3 | SIB_A2 )	// Slot 0 always shifts in
					 // 0xFF and store it to
					 // FB_BUFFER2.

// TrimDac LogicalChan-to-PhysicalChan mapping table.
static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };

// TrimDac LogicalChan-to-EepromAdrs mapping table.
static uint8_t trimadrs[] =
	{ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };

static void LoadTrimDACs(comedi_device * dev)
{
	register uint8_t i;

	// Copy TrimDac setpoint values from EEPROM to TrimDacs.
	for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
}

static void WriteTrimDAC(comedi_device * dev, uint8_t LogicalChan,
	uint8_t DacData)
{
	uint32_t chan;

	// Save the new setpoint in case the application needs to read it back later.
	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;

	// Map logical channel number to physical channel number.
	chan = (uint32_t) trimchan[LogicalChan];

	// Set up TSL2 records for TrimDac write operation.  All slots shift
	// 0xFF in from pulled-up SD3 so that the end of the slot sequence
	// can be detected.
	SETVECT(2, XSD2 | XFIFO_1 | WS3);	// Slot 2: Send high uint8_t
	// to target TrimDac.
	SETVECT(3, XSD2 | XFIFO_0 | WS3);	// Slot 3: Send low uint8_t to
	// target TrimDac.
	SETVECT(4, XSD2 | XFIFO_3 | WS1);	// Slot 4: Send NOP high
	// uint8_t to DAC0 to keep
	// clock running.
	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);	// Slot 5: Send NOP low
	// uint8_t to DAC0.

	// Construct and transmit target DAC's serial packet: ( 0000 AAAA
	// ),( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the DAC
	// channel's address, and D<7:0> is the DAC setpoint.  Append a WORD
	// value (that writes a channel 0 NOP command to a non-existent main
	// DAC channel) that serves to keep the clock running after the
	// packet has been sent to the target DAC.

	SendDAC(dev, ((uint32_t) chan << 8)	// Address the DAC channel
		// within the trimdac device.
		| (uint32_t) DacData);	// Include DAC setpoint data.
}

/////////////////////////////////////////////////////////////////////////
////////////////  EEPROM ACCESS FUNCTIONS  //////////////////////////////
/////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////
// Read uint8_t from EEPROM.

static uint8_t I2Cread(comedi_device * dev, uint8_t addr)
{
	uint8_t rtnval;

	// Send EEPROM target address.
	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)	// Byte2 = I2C
			// command:
			// write to
			// I2C EEPROM
			// device.
			| I2C_B1(I2C_ATTRSTOP, addr)	// Byte1 = EEPROM
			// internal target
			// address.
			| I2C_B0(I2C_ATTRNOP, 0)))	// Byte0 = Not
		// sent.
	{
		// Abort function and declare error if handshake failed.
		DEBUG("I2Cread: error handshake I2Cread  a\n");
		return 0;
	}
	// Execute EEPROM read.
	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)	// Byte2 = I2C
			// command: read
			// from I2C EEPROM
			// device.
			| I2C_B1(I2C_ATTRSTOP, 0)	// Byte1 receives
			// uint8_t from
			// EEPROM.
			| I2C_B0(I2C_ATTRNOP, 0)))	// Byte0 = Not
		// sent.
	{
		// Abort function and declare error if handshake failed.
		DEBUG("I2Cread: error handshake I2Cread b\n");
		return 0;
	}
	// Return copy of EEPROM value.
	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
	return rtnval;
}

static uint32_t I2Chandshake(comedi_device * dev, uint32_t val)
{
	// Write I2C command to I2C Transfer Control shadow register.
	WR7146(P_I2CCTRL, val);

	// Upload I2C shadow registers into working registers and wait for
	// upload confirmation.

	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
	while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;

	// Wait until I2C bus transfer is finished or an error occurs.
	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;

	// Return non-zero if I2C error occured.
	return RR7146(P_I2CCTRL) & I2C_ERR;

}

// Private helper function: Write setpoint to an application DAC channel.

static void SetDAC(comedi_device * dev, uint16_t chan, short dacdata)
{
	register uint16_t signmask;
	register uint32_t WSImage;

	// Adjust DAC data polarity and set up Polarity Control Register
	// image.
	signmask = 1 << chan;
	if (dacdata < 0) {
		dacdata = -dacdata;
		devpriv->Dacpol |= signmask;
	} else
		devpriv->Dacpol &= ~signmask;

	// Limit DAC setpoint value to valid range.
	if ((uint16_t) dacdata > 0x1FFF)
		dacdata = 0x1FFF;

	// Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
	// and V3 transmit the setpoint to the target DAC.  V4 and V5 send
	// data to a non-existent TrimDac channel just to keep the clock
	// running after sending data to the target DAC.  This is necessary
	// to eliminate the clock glitch that would otherwise occur at the
	// end of the target DAC's serial data stream.  When the sequence
	// restarts at V0 (after executing V5), the gate array automatically
	// disables gating for the DAC clock and all DAC chip selects.
	WSImage = (chan & 2) ? WS1 : WS2;	// Choose DAC chip select to
	// be asserted.
	SETVECT(2, XSD2 | XFIFO_1 | WSImage);	// Slot 2: Transmit high
	// data byte to target DAC.
	SETVECT(3, XSD2 | XFIFO_0 | WSImage);	// Slot 3: Transmit low data
	// byte to target DAC.
	SETVECT(4, XSD2 | XFIFO_3 | WS3);	// Slot 4: Transmit to
	// non-existent TrimDac
	// channel to keep clock
	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);	// Slot 5: running after
	// writing target DAC's
	// low data byte.

	// Construct and transmit target DAC's serial packet: ( A10D DDDD
	// ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>, and D<12:0>
	// is the DAC setpoint.  Append a WORD value (that writes to a
	// non-existent TrimDac channel) that serves to keep the clock
	// running after the packet has been sent to the target DAC.
	SendDAC(dev, 0x0F000000	//Continue clock after target DAC
		//data (write to non-existent
		//trimdac).
		| 0x00004000	// Address the two main dual-DAC
		// devices (TSL's chip select enables
		// target device).
		| ((uint32_t) (chan & 1) << 15)	// Address the DAC
		// channel within the
		// device.
		| (uint32_t) dacdata);	// Include DAC setpoint data.

}

////////////////////////////////////////////////////////
// Private helper function: Transmit serial data to DAC via Audio
// channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
// Dacpol contains valid target image.

static void SendDAC(comedi_device * dev, uint32_t val)
{

	// START THE SERIAL CLOCK RUNNING -------------

	// Assert DAC polarity control and enable gating of DAC serial clock
	// and audio bit stream signals.  At this point in time we must be
	// assured of being in time slot 0.  If we are not in slot 0, the
	// serial clock and audio stream signals will be disabled; this is
	// because the following DEBIwrite statement (which enables signals
	// to be passed through the gate array) would execute before the
	// trailing edge of WS1/WS3 (which turns off the signals), thus
	// causing the signals to be inactive during the DAC write.
	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);

	// TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ----------------

	// Copy DAC setpoint value to DAC's output DMA buffer.

	//WR7146( (uint32_t)devpriv->pDacWBuf, val );
	*devpriv->pDacWBuf = val;

	// enab the output DMA transfer.  This will cause the DMAC to copy
	// the DAC's data value to A2's output FIFO.  The DMA transfer will
	// then immediately terminate because the protection address is
	// reached upon transfer of the first DWORD value.
	MC_ENABLE(P_MC1, MC1_A2OUT);

	// While the DMA transfer is executing ...

	// Reset Audio2 output FIFO's underflow flag (along with any other
	// FIFO underflow/overflow flags).  When set, this flag will
	// indicate that we have emerged from slot 0.
	WR7146(P_ISR, ISR_AFOU);

	// Wait for the DMA transfer to finish so that there will be data
	// available in the FIFO when time slot 1 tries to transfer a DWORD
	// from the FIFO to the output buffer register.  We test for DMA
	// Done by polling the DMAC enable flag; this flag is automatically
	// cleared when the transfer has finished.
	while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;

	// START THE OUTPUT STREAM TO THE TARGET DAC --------------------

	// FIFO data is now available, so we enable execution of time slots
	// 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
	// will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
	// detection.
	SETVECT(0, XSD2 | RSD3 | SIB_A2);

	// Wait for slot 1 to execute to ensure that the Packet will be
	// transmitted.  This is detected by polling the Audio2 output FIFO
	// underflow flag, which will be set when slot 1 execution has
	// finished transferring the DAC's data DWORD from the output FIFO
	// to the output buffer register.
	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;

	// Set up to trap execution at slot 0 when the TSL sequencer cycles
	// back to slot 0 after executing the EOS in slot 5.  Also,
	// simultaneously shift out and in the 0x00 that is ALWAYS the value
	// stored in the last byte to be shifted out of the FIFO's DWORD
	// buffer register.
	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);

	// WAIT FOR THE TRANSACTION TO FINISH -----------------------

	// Wait for the TSL to finish executing all time slots before
	// exiting this function.  We must do this so that the next DAC
	// write doesn't start, thereby enabling clock/chip select signals:
	// 1. Before the TSL sequence cycles back to slot 0, which disables
	// the clock/cs signal gating and traps slot // list execution.  If
	// we have not yet finished slot 5 then the clock/cs signals are
	// still gated and we have // not finished transmitting the stream.
	// 2. While slots 2-5 are executing due to a late slot 0 trap.  In
	// this case, the slot sequence is currently // repeating, but with
	// clock/cs signals disabled.  We must wait for slot 0 to trap
	// execution before setting // up the next DAC setpoint DMA transfer
	// and enabling the clock/cs signals.  To detect the end of slot 5,
	// we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
	// the TSL has not yet finished executing slot 5 ...
	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
		// The trap was set on time and we are still executing somewhere
		// in slots 2-5, so we now wait for slot 0 to execute and trap
		// TSL execution.  This is detected when FB_BUFFER2 MSB changes
		// from 0xFF to 0x00, which slot 0 causes to happen by shifting
		// out/in on SD2 the 0x00 that is always referenced by slot 5.
		while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
	}
	// Either (1) we were too late setting the slot 0 trap; the TSL
	// sequencer restarted slot 0 before we could set the EOS trap flag,
	// or (2) we were not late and execution is now trapped at slot 0.
	// In either case, we must now change slot 0 so that it will store
	// value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
	// In order to do this, we reprogram slot 0 so that it will shift in
	// SD3, which is driven only by a pull-up resistor.
	SETVECT(0, RSD3 | SIB_A2 | EOS);

	// Wait for slot 0 to execute, at which time the TSL is setup for
	// the next DAC write.  This is detected when FB_BUFFER2 MSB changes
	// from 0x00 to 0xFF.
	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
}

static void WriteMISC2(comedi_device * dev, uint16_t NewImage)
{
	DEBIwrite(dev, LP_MISC1, MISC1_WENABLE);	// enab writes to
	// MISC2 register.
	DEBIwrite(dev, LP_WRMISC2, NewImage);	// Write new image to MISC2.
	DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE);	// Disable writes to MISC2.
}

/////////////////////////////////////////////////////////////////////
// Initialize the DEBI interface for all transfers.

static uint16_t DEBIread(comedi_device * dev, uint16_t addr)
{
	uint16_t retval;

	// Set up DEBI control register value in shadow RAM.
	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);

	// Execute the DEBI transfer.
	DEBItransfer(dev);

	// Fetch target register value.
	retval = (uint16_t) RR7146(P_DEBIAD);

	// Return register value.
	return retval;
}

// Execute a DEBI transfer.  This must be called from within a
// critical section.
static void DEBItransfer(comedi_device * dev)
{
	// Initiate upload of shadow RAM to DEBI control register.
	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);

	// Wait for completion of upload from shadow RAM to DEBI control
	// register.
	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;

	// Wait until DEBI transfer is done.
	while (RR7146(P_PSR) & PSR_DEBI_S) ;
}

// Write a value to a gate array register.
static void DEBIwrite(comedi_device * dev, uint16_t addr, uint16_t wdata)
{

	// Set up DEBI control register value in shadow RAM.
	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
	WR7146(P_DEBIAD, wdata);

	// Execute the DEBI transfer.
	DEBItransfer(dev);
}

/////////////////////////////////////////////////////////////////////////////
// Replace the specified bits in a gate array register.  Imports: mask
// specifies bits that are to be preserved, wdata is new value to be
// or'd with the masked original.
static void DEBIreplace(comedi_device * dev, uint16_t addr, uint16_t mask,
	uint16_t wdata)
{

	// Copy target gate array register into P_DEBIAD register.
	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);	// Set up DEBI control
	// reg value in shadow
	// RAM.
	DEBItransfer(dev);	// Execute the DEBI
	// Read transfer.

	// Write back the modified image.
	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);	// Set up DEBI control
	// reg value in shadow
	// RAM.

	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));	// Modify the register image.
	DEBItransfer(dev);	// Execute the DEBI Write transfer.
}

static void CloseDMAB(comedi_device * dev, DMABUF * pdma, size_t bsize)
{
	void *vbptr;
	dma_addr_t vpptr;

	DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
	if (pdma == NULL)
		return;
	//find the matching allocation from the board struct

	vbptr = pdma->LogicalBase;
	vpptr = pdma->PhysicalBase;
	if (vbptr) {
		pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
		pdma->LogicalBase = 0;
		pdma->PhysicalBase = 0;

		DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
			vbptr, bsize, (uint32_t) vpptr);
	}
}

////////////////////////////////////////////////////////////////////////
/////////////////  COUNTER FUNCTIONS  //////////////////////////////////
////////////////////////////////////////////////////////////////////////
// All counter functions address a specific counter by means of the
// "Counter" argument, which is a logical counter number.  The Counter
// argument may have any of the following legal values: 0=0A, 1=1A,
// 2=2A, 3=0B, 4=1B, 5=2B.
////////////////////////////////////////////////////////////////////////

// Forward declarations for functions that are common to both A and B
// counters:

/////////////////////////////////////////////////////////////////////
//////////////////// PRIVATE COUNTER FUNCTIONS  /////////////////////
/////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////
// Read a counter's output latch.

static uint32_t ReadLatch(comedi_device * dev, enc_private * k)
{
	register uint32_t value;
	//DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n");

	// Latch counts and fetch LSW of latched counts value.
	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);

	// Fetch MSW of latched counts and combine with LSW.
	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);

	// DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n");

	// Return latched counts.
	return value;
}

///////////////////////////////////////////////////////////////////
// Reset a counter's index and overflow event capture flags.

static void ResetCapFlags_A(comedi_device * dev, enc_private * k)
{
	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
}

static void ResetCapFlags_B(comedi_device * dev, enc_private * k)
{
	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
}

/////////////////////////////////////////////////////////////////////////
// Return counter setup in a format (COUNTER_SETUP) that is consistent
// for both A and B counters.

static uint16_t GetMode_A(comedi_device * dev, enc_private * k)
{
	register uint16_t cra;
	register uint16_t crb;
	register uint16_t setup;

	// Fetch CRA and CRB register images.
	cra = DEBIread(dev, k->MyCRA);
	crb = DEBIread(dev, k->MyCRB);

	// Populate the standardized counter setup bit fields.  Note:
	// IndexSrc is restricted to ENC_X or IndxPol.
	setup = ((cra & STDMSK_LOADSRC)	// LoadSrc  = LoadSrcA.
		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	// LatchSrc = LatchSrcA.
		| ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC)	// IntSrc   = IntSrcA.
		| ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC)	// IndxSrc  = IndxSrcA<1>.
		| ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL)	// IndxPol  = IndxPolA.
		| ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB));	// ClkEnab  = ClkEnabA.

	// Adjust mode-dependent parameters.
	if (cra & (2 << CRABIT_CLKSRC_A))	// If Timer mode (ClkSrcA<1> == 1):
		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	//   Indicate Timer mode.
			| ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL)	//   Set ClkPol to indicate count direction (ClkSrcA<0>).
			| (MULT_X1 << STDBIT_CLKMULT));	//   ClkMult must be 1x in Timer mode.

	else			// If Counter mode (ClkSrcA<1> == 0):
		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	//   Indicate Counter mode.
			| ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL)	//   Pass through ClkPol.
			| (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ?	//   Force ClkMult to 1x if not legal, else pass through.
				(MULT_X1 << STDBIT_CLKMULT) :
				((cra >> (CRABIT_CLKMULT_A -
							STDBIT_CLKMULT)) &
					STDMSK_CLKMULT)));

	// Return adjusted counter setup.
	return setup;
}

static uint16_t GetMode_B(comedi_device * dev, enc_private * k)
{
	register uint16_t cra;
	register uint16_t crb;
	register uint16_t setup;

	// Fetch CRA and CRB register images.
	cra = DEBIread(dev, k->MyCRA);
	crb = DEBIread(dev, k->MyCRB);

	// Populate the standardized counter setup bit fields.  Note:
	// IndexSrc is restricted to ENC_X or IndxPol.
	setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC)	// IntSrc   = IntSrcB.
		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	// LatchSrc = LatchSrcB.
		| ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC)	// LoadSrc  = LoadSrcB.
		| ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL)	// IndxPol  = IndxPolB.
		| ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB)	// ClkEnab  = ClkEnabB.
		| ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC));	// IndxSrc  = IndxSrcB<1>.

	// Adjust mode-dependent parameters.
	if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B))	// If Extender mode (ClkMultB == MULT_X0):
		setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC)	//   Indicate Extender mode.
			| (MULT_X1 << STDBIT_CLKMULT)	//   Indicate multiplier is 1x.
			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	//   Set ClkPol equal to Timer count direction (ClkSrcB<0>).

	else if (cra & (2 << CRABIT_CLKSRC_B))	// If Timer mode (ClkSrcB<1> == 1):
		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	//   Indicate Timer mode.
			| (MULT_X1 << STDBIT_CLKMULT)	//   Indicate multiplier is 1x.
			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	//   Set ClkPol equal to Timer count direction (ClkSrcB<0>).

	else			// If Counter mode (ClkSrcB<1> == 0):
		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	//   Indicate Timer mode.
			| ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT)	//   Clock multiplier is passed through.
			| ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL));	//   Clock polarity is passed through.

	// Return adjusted counter setup.
	return setup;
}

/////////////////////////////////////////////////////////////////////////////////////////////
// Set the operating mode for the specified counter.  The setup
// parameter is treated as a COUNTER_SETUP data type.  The following
// parameters are programmable (all other parms are ignored): ClkMult,
// ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.

static void SetMode_A(comedi_device * dev, enc_private * k, uint16_t Setup,
	uint16_t DisableIntSrc)
{
	register uint16_t cra;
	register uint16_t crb;
	register uint16_t setup = Setup;	// Cache the Standard Setup.

	// Initialize CRA and CRB images.
	cra = ((setup & CRAMSK_LOADSRC_A)	// Preload trigger is passed through.
		| ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))));	// IndexSrc is restricted to ENC_X or IndxPol.

	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A	// Reset any pending CounterA event captures.
		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)));	// Clock enable is passed through.

	// Force IntSrc to Disabled if DisableIntSrc is asserted.
	if (!DisableIntSrc)
		cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
				CRABIT_INTSRC_A));

	// Populate all mode-dependent attributes of CRA & CRB images.
	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
	case CLKSRC_EXTENDER:	// Extender Mode: Force to Timer mode
		// (Extender valid only for B counters).

	case CLKSRC_TIMER:	// Timer Mode:
		cra |= ((2 << CRABIT_CLKSRC_A)	//   ClkSrcA<1> selects system clock
			| ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A))	//     with count direction (ClkSrcA<0>) obtained from ClkPol.
			| (1 << CRABIT_CLKPOL_A)	//   ClkPolA behaves as always-on clock enable.
			| (MULT_X1 << CRABIT_CLKMULT_A));	//   ClkMult must be 1x.
		break;

	default:		// Counter Mode:
		cra |= (CLKSRC_COUNTER	//   Select ENC_C and ENC_D as clock/direction inputs.
			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL))	//   Clock polarity is passed through.
			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	//   Force multiplier to x1 if not legal, otherwise pass through.
				(MULT_X1 << CRABIT_CLKMULT_A) :
				((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
						STDBIT_CLKMULT))));
	}

	// Force positive index polarity if IndxSrc is software-driven only,
	// otherwise pass it through.
	if (~setup & STDMSK_INDXSRC)
		cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
				STDBIT_INDXPOL));

	// If IntSrc has been forced to Disabled, update the MISC2 interrupt
	// enable mask to indicate the counter interrupt is disabled.
	if (DisableIntSrc)
		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];

	// While retaining CounterB and LatchSrc configurations, program the
	// new counter operating mode.
	DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
	DEBIreplace(dev, k->MyCRB,
		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
}

static void SetMode_B(comedi_device * dev, enc_private * k, uint16_t Setup,
	uint16_t DisableIntSrc)
{
	register uint16_t cra;
	register uint16_t crb;
	register uint16_t setup = Setup;	// Cache the Standard Setup.

	// Initialize CRA and CRB images.
	cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC));	// IndexSrc field is restricted to ENC_X or IndxPol.

	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B	// Reset event captures and disable interrupts.
		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB))	// Clock enable is passed through.
		| ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)));	// Preload trigger source is passed through.

	// Force IntSrc to Disabled if DisableIntSrc is asserted.
	if (!DisableIntSrc)
		crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
				CRBBIT_INTSRC_B));

	// Populate all mode-dependent attributes of CRA & CRB images.
	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
	case CLKSRC_TIMER:	// Timer Mode:
		cra |= ((2 << CRABIT_CLKSRC_B)	//   ClkSrcB<1> selects system clock
			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	//     with direction (ClkSrcB<0>) obtained from ClkPol.
		crb |= ((1 << CRBBIT_CLKPOL_B)	//   ClkPolB behaves as always-on clock enable.
			| (MULT_X1 << CRBBIT_CLKMULT_B));	//   ClkMultB must be 1x.
		break;

	case CLKSRC_EXTENDER:	// Extender Mode:
		cra |= ((2 << CRABIT_CLKSRC_B)	//   ClkSrcB source is OverflowA (same as "timer")
			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	//     with direction obtained from ClkPol.
		crb |= ((1 << CRBBIT_CLKPOL_B)	//   ClkPolB controls IndexB -- always set to active.
			| (MULT_X0 << CRBBIT_CLKMULT_B));	//   ClkMultB selects OverflowA as the clock source.
		break;

	default:		// Counter Mode:
		cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B);	//   Select ENC_C and ENC_D as clock/direction inputs.
		crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B))	//   ClkPol is passed through.
			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	//   Force ClkMult to x1 if not legal, otherwise pass through.
				(MULT_X1 << CRBBIT_CLKMULT_B) :
				((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
						STDBIT_CLKMULT))));
	}

	// Force positive index polarity if IndxSrc is software-driven only,
	// otherwise pass it through.
	if (~setup & STDMSK_INDXSRC)
		crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
				CRBBIT_INDXPOL_B));

	// If IntSrc has been forced to Disabled, update the MISC2 interrupt
	// enable mask to indicate the counter interrupt is disabled.
	if (DisableIntSrc)
		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];

	// While retaining CounterA and LatchSrc configurations, program the
	// new counter operating mode.
	DEBIreplace(dev, k->MyCRA,
		(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
	DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
}

////////////////////////////////////////////////////////////////////////
// Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.

static void SetEnable_A(comedi_device * dev, enc_private * k, uint16_t enab)
{
	DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
	DEBIreplace(dev, k->MyCRB,
		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
		(uint16_t) (enab << CRBBIT_CLKENAB_A));
}

static void SetEnable_B(comedi_device * dev, enc_private * k, uint16_t enab)
{
	DEBIreplace(dev, k->MyCRB,
		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
		(uint16_t) (enab << CRBBIT_CLKENAB_B));
}

static uint16_t GetEnable_A(comedi_device * dev, enc_private * k)
{
	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
}

static uint16_t GetEnable_B(comedi_device * dev, enc_private * k)
{
	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
}

////////////////////////////////////////////////////////////////////////
// Return/set a counter pair's latch trigger source.  0: On read
// access, 1: A index latches A, 2: B index latches B, 3: A overflow
// latches B.

static void SetLatchSource(comedi_device * dev, enc_private * k, uint16_t value)
{
	DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
	DEBIreplace(dev, k->MyCRB,
		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
		(uint16_t) (value << CRBBIT_LATCHSRC));

	DEBUG("SetLatchSource: SetLatchSource exit \n");
}

/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ) */
/* { */
/*   return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3; */
/* } */

/////////////////////////////////////////////////////////////////////////
// Return/set the event that will trigger transfer of the preload
// register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
// 2=OverflowA (B counters only), 3=disabled.

static void SetLoadTrig_A(comedi_device * dev, enc_private * k, uint16_t Trig)
{
	DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
		(uint16_t) (Trig << CRABIT_LOADSRC_A));
}

static void SetLoadTrig_B(comedi_device * dev, enc_private * k, uint16_t Trig)
{
	DEBIreplace(dev, k->MyCRB,
		(uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
		(uint16_t) (Trig << CRBBIT_LOADSRC_B));
}

static uint16_t GetLoadTrig_A(comedi_device * dev, enc_private * k)
{
	return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
}

static uint16_t GetLoadTrig_B(comedi_device * dev, enc_private * k)
{
	return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
}

////////////////////
// Return/set counter interrupt source and clear any captured
// index/overflow events.  IntSource: 0=Disabled, 1=OverflowOnly,
// 2=IndexOnly, 3=IndexAndOverflow.

static void SetIntSrc_A(comedi_device * dev, enc_private * k,
	uint16_t IntSource)
{
	// Reset any pending counter overflow or index captures.
	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);

	// Program counter interrupt source.
	DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
		(uint16_t) (IntSource << CRABIT_INTSRC_A));

	// Update MISC2 interrupt enable mask.
	devpriv->CounterIntEnabs =
		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
		MyEventBits[IntSource];
}

static void SetIntSrc_B(comedi_device * dev, enc_private * k,
	uint16_t IntSource)
{
	uint16_t crb;

	// Cache writeable CRB register image.
	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;

	// Reset any pending counter overflow or index captures.
	DEBIwrite(dev, k->MyCRB,
		(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));

	// Program counter interrupt source.
	DEBIwrite(dev, k->MyCRB,
		(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
				CRBBIT_INTSRC_B)));

	// Update MISC2 interrupt enable mask.
	devpriv->CounterIntEnabs =
		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
		MyEventBits[IntSource];
}

static uint16_t GetIntSrc_A(comedi_device * dev, enc_private * k)
{
	return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
}

static uint16_t GetIntSrc_B(comedi_device * dev, enc_private * k)
{
	return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
}

/////////////////////////////////////////////////////////////////////////
// Return/set the clock multiplier.

/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value )  */
/* { */
/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
/* } */

/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k )  */
/* { */
/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
/* } */

/* ////////////////////////////////////////////////////////////////////////// */
/* // Return/set the clock polarity. */

/* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value )  */
/* { */
/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
/* } */

/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k )  */
/* { */
/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
/* } */

/* /////////////////////////////////////////////////////////////////////// */
/* // Return/set the clock source. */

/* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value )  */
/* { */
/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
/* } */

/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k )  */
/* { */
/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
/* } */

/* //////////////////////////////////////////////////////////////////////// */
/* // Return/set the index polarity. */

/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value )  */
/* { */
/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
/* } */

/* static uint16_t GetIndexPol(comedi_device *dev, enc_private *k )  */
/* { */
/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
/* } */

/* //////////////////////////////////////////////////////////////////////// */
/* // Return/set the index source. */

/* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value )  */
/* { */
/*   DEBUG("SetIndexSrc: set index src enter 3700\n"); */
/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
/* } */

/* static uint16_t GetIndexSrc(comedi_device *dev, enc_private *k )  */
/* { */
/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
/* } */

///////////////////////////////////////////////////////////////////
// Generate an index pulse.

static void PulseIndex_A(comedi_device * dev, enc_private * k)
{
	register uint16_t cra;

	DEBUG("PulseIndex_A: pulse index enter\n");

	cra = DEBIread(dev, k->MyCRA);	// Pulse index.
	DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
	DEBUG("PulseIndex_A: pulse index step1\n");
	DEBIwrite(dev, k->MyCRA, cra);
}

static void PulseIndex_B(comedi_device * dev, enc_private * k)
{
	register uint16_t crb;

	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;	// Pulse index.
	DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
	DEBIwrite(dev, k->MyCRB, crb);
}

/////////////////////////////////////////////////////////
// Write value into counter preload register.

static void Preload(comedi_device * dev, enc_private * k, uint32_t value)
{
	DEBUG("Preload: preload enter\n");
	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);	// Write value to preload register.
	DEBUG("Preload: preload step 1\n");
	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
		(uint16_t) (value >> 16));
}

static void CountersInit(comedi_device * dev)
{
	int chan;
	enc_private *k;
	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	// Preload upon
		// index.
		(INDXSRC_SOFT << BF_INDXSRC) |	// Disable hardware index.
		(CLKSRC_COUNTER << BF_CLKSRC) |	// Operating mode is counter.
		(CLKPOL_POS << BF_CLKPOL) |	// Active high clock.
		(CNTDIR_UP << BF_CLKPOL) |	// Count direction is up.
		(CLKMULT_1X << BF_CLKMULT) |	// Clock multiplier is 1x.
		(CLKENAB_INDEX << BF_CLKENAB);	// Enabled by index

	// Disable all counter interrupts and clear any captured counter events.
	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
		k = &encpriv[chan];
		k->SetMode(dev, k, Setup, TRUE);
		k->SetIntSrc(dev, k, 0);
		k->ResetCapFlags(dev, k);
		k->SetEnable(dev, k, CLKENAB_ALWAYS);
	}
	DEBUG("CountersInit: counters initialized \n");

}
back to top