Staging
v0.5.1
https://github.com/python/cpython
Raw File
Tip revision: c126fdc0bddc9f52d3bc859104741976a6fad9b5 authored by Larry Hastings on 19 July 2018, 12:12:59 UTC
Version bump for 3.4.9rc1.
Tip revision: c126fdc
umodarith.h
/*
 * Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */


#ifndef UMODARITH_H
#define UMODARITH_H


#include "constants.h"
#include "mpdecimal.h"
#include "typearith.h"


/* Bignum: Low level routines for unsigned modular arithmetic. These are
   used in the fast convolution functions for very large coefficients. */


/**************************************************************************/
/*                        ANSI modular arithmetic                         */
/**************************************************************************/


/*
 * Restrictions: a < m and b < m
 * ACL2 proof: umodarith.lisp: addmod-correct
 */
static inline mpd_uint_t
addmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
{
    mpd_uint_t s;

    s = a + b;
    s = (s < a) ? s - m : s;
    s = (s >= m) ? s - m : s;

    return s;
}

/*
 * Restrictions: a < m and b < m
 * ACL2 proof: umodarith.lisp: submod-2-correct
 */
static inline mpd_uint_t
submod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
{
    mpd_uint_t d;

    d = a - b;
    d = (a < b) ? d + m : d;

    return d;
}

/*
 * Restrictions: a < 2m and b < 2m
 * ACL2 proof: umodarith.lisp: section ext-submod
 */
static inline mpd_uint_t
ext_submod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
{
    mpd_uint_t d;

    a = (a >= m) ? a - m : a;
    b = (b >= m) ? b - m : b;

    d = a - b;
    d = (a < b) ? d + m : d;

    return d;
}

/*
 * Reduce double word modulo m.
 * Restrictions: m != 0
 * ACL2 proof: umodarith.lisp: section dw-reduce
 */
static inline mpd_uint_t
dw_reduce(mpd_uint_t hi, mpd_uint_t lo, mpd_uint_t m)
{
    mpd_uint_t r1, r2, w;

    _mpd_div_word(&w, &r1, hi, m);
    _mpd_div_words(&w, &r2, r1, lo, m);

    return r2;
}

/*
 * Subtract double word from a.
 * Restrictions: a < m
 * ACL2 proof: umodarith.lisp: section dw-submod
 */
static inline mpd_uint_t
dw_submod(mpd_uint_t a, mpd_uint_t hi, mpd_uint_t lo, mpd_uint_t m)
{
    mpd_uint_t d, r;

    r = dw_reduce(hi, lo, m);
    d = a - r;
    d = (a < r) ? d + m : d;

    return d;
}

#ifdef CONFIG_64

/**************************************************************************/
/*                        64-bit modular arithmetic                       */
/**************************************************************************/

/*
 * A proof of the algorithm is in literature/mulmod-64.txt. An ACL2
 * proof is in umodarith.lisp: section "Fast modular reduction".
 *
 * Algorithm: calculate (a * b) % p:
 *
 *   a) hi, lo <- a * b       # Calculate a * b.
 *
 *   b) hi, lo <-  R(hi, lo)  # Reduce modulo p.
 *
 *   c) Repeat step b) until 0 <= hi * 2**64 + lo < 2*p.
 *
 *   d) If the result is less than p, return lo. Otherwise return lo - p.
 */

static inline mpd_uint_t
x64_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
{
    mpd_uint_t hi, lo, x, y;


    _mpd_mul_words(&hi, &lo, a, b);

    if (m & (1ULL<<32)) { /* P1 */

        /* first reduction */
        x = y = hi;
        hi >>= 32;

        x = lo - x;
        if (x > lo) hi--;

        y <<= 32;
        lo = y + x;
        if (lo < y) hi++;

        /* second reduction */
        x = y = hi;
        hi >>= 32;

        x = lo - x;
        if (x > lo) hi--;

        y <<= 32;
        lo = y + x;
        if (lo < y) hi++;

        return (hi || lo >= m ? lo - m : lo);
    }
    else if (m & (1ULL<<34)) { /* P2 */

        /* first reduction */
        x = y = hi;
        hi >>= 30;

        x = lo - x;
        if (x > lo) hi--;

        y <<= 34;
        lo = y + x;
        if (lo < y) hi++;

        /* second reduction */
        x = y = hi;
        hi >>= 30;

        x = lo - x;
        if (x > lo) hi--;

        y <<= 34;
        lo = y + x;
        if (lo < y) hi++;

        /* third reduction */
        x = y = hi;
        hi >>= 30;

        x = lo - x;
        if (x > lo) hi--;

        y <<= 34;
        lo = y + x;
        if (lo < y) hi++;

        return (hi || lo >= m ? lo - m : lo);
    }
    else { /* P3 */

        /* first reduction */
        x = y = hi;
        hi >>= 24;

        x = lo - x;
        if (x > lo) hi--;

        y <<= 40;
        lo = y + x;
        if (lo < y) hi++;

        /* second reduction */
        x = y = hi;
        hi >>= 24;

        x = lo - x;
        if (x > lo) hi--;

        y <<= 40;
        lo = y + x;
        if (lo < y) hi++;

        /* third reduction */
        x = y = hi;
        hi >>= 24;

        x = lo - x;
        if (x > lo) hi--;

        y <<= 40;
        lo = y + x;
        if (lo < y) hi++;

        return (hi || lo >= m ? lo - m : lo);
    }
}

static inline void
x64_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m)
{
    *a = x64_mulmod(*a, w, m);
    *b = x64_mulmod(*b, w, m);
}

static inline void
x64_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
            mpd_uint_t m)
{
    *a0 = x64_mulmod(*a0, b0, m);
    *a1 = x64_mulmod(*a1, b1, m);
}

static inline mpd_uint_t
x64_powmod(mpd_uint_t base, mpd_uint_t exp, mpd_uint_t umod)
{
    mpd_uint_t r = 1;

    while (exp > 0) {
        if (exp & 1)
            r = x64_mulmod(r, base, umod);
        base = x64_mulmod(base, base, umod);
        exp >>= 1;
    }

    return r;
}

/* END CONFIG_64 */
#else /* CONFIG_32 */


/**************************************************************************/
/*                        32-bit modular arithmetic                       */
/**************************************************************************/

#if defined(ANSI)
#if !defined(LEGACY_COMPILER)
/* HAVE_UINT64_T */
static inline mpd_uint_t
std_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
{
    return ((mpd_uuint_t) a * b) % m;
}

static inline void
std_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m)
{
    *a = ((mpd_uuint_t) *a * w) % m;
    *b = ((mpd_uuint_t) *b * w) % m;
}

static inline void
std_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
            mpd_uint_t m)
{
    *a0 = ((mpd_uuint_t) *a0 * b0) % m;
    *a1 = ((mpd_uuint_t) *a1 * b1) % m;
}
/* END HAVE_UINT64_T */
#else
/* LEGACY_COMPILER */
static inline mpd_uint_t
std_mulmod(mpd_uint_t a, mpd_uint_t b, mpd_uint_t m)
{
    mpd_uint_t hi, lo, q, r;
    _mpd_mul_words(&hi, &lo, a, b);
    _mpd_div_words(&q, &r, hi, lo, m);
    return r;
}

static inline void
std_mulmod2c(mpd_uint_t *a, mpd_uint_t *b, mpd_uint_t w, mpd_uint_t m)
{
    *a = std_mulmod(*a, w, m);
    *b = std_mulmod(*b, w, m);
}

static inline void
std_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
            mpd_uint_t m)
{
    *a0 = std_mulmod(*a0, b0, m);
    *a1 = std_mulmod(*a1, b1, m);
}
/* END LEGACY_COMPILER */
#endif

static inline mpd_uint_t
std_powmod(mpd_uint_t base, mpd_uint_t exp, mpd_uint_t umod)
{
    mpd_uint_t r = 1;

    while (exp > 0) {
        if (exp & 1)
            r = std_mulmod(r, base, umod);
        base = std_mulmod(base, base, umod);
        exp >>= 1;
    }

    return r;
}
#endif /* ANSI CONFIG_32 */


/**************************************************************************/
/*                    Pentium Pro modular arithmetic                      */
/**************************************************************************/

/*
 * A proof of the algorithm is in literature/mulmod-ppro.txt. The FPU
 * control word must be set to 64-bit precision and truncation mode
 * prior to using these functions.
 *
 * Algorithm: calculate (a * b) % p:
 *
 *   p    := prime < 2**31
 *   pinv := (long double)1.0 / p (precalculated)
 *
 *   a) n = a * b              # Calculate exact product.
 *   b) qest = n * pinv        # Calculate estimate for q = n / p.
 *   c) q = (qest+2**63)-2**63 # Truncate qest to the exact quotient.
 *   d) r = n - q * p          # Calculate remainder.
 *
 * Remarks:
 *
 *   - p = dmod and pinv = dinvmod.
 *   - dinvmod points to an array of three uint32_t, which is interpreted
 *     as an 80 bit long double by fldt.
 *   - Intel compilers prior to version 11 do not seem to handle the
 *     __GNUC__ inline assembly correctly.
 *   - random tests are provided in tests/extended/ppro_mulmod.c
 */

#if defined(PPRO)
#if defined(ASM)

/* Return (a * b) % dmod */
static inline mpd_uint_t
ppro_mulmod(mpd_uint_t a, mpd_uint_t b, double *dmod, uint32_t *dinvmod)
{
    mpd_uint_t retval;

    __asm__ (
            "fildl  %2\n\t"
            "fildl  %1\n\t"
            "fmulp  %%st, %%st(1)\n\t"
            "fldt   (%4)\n\t"
            "fmul   %%st(1), %%st\n\t"
            "flds   %5\n\t"
            "fadd   %%st, %%st(1)\n\t"
            "fsubrp %%st, %%st(1)\n\t"
            "fldl   (%3)\n\t"
            "fmulp  %%st, %%st(1)\n\t"
            "fsubrp %%st, %%st(1)\n\t"
            "fistpl %0\n\t"
            : "=m" (retval)
            : "m" (a), "m" (b), "r" (dmod), "r" (dinvmod), "m" (MPD_TWO63)
            : "st", "memory"
    );

    return retval;
}

/*
 * Two modular multiplications in parallel:
 *      *a0 = (*a0 * w) % dmod
 *      *a1 = (*a1 * w) % dmod
 */
static inline void
ppro_mulmod2c(mpd_uint_t *a0, mpd_uint_t *a1, mpd_uint_t w,
              double *dmod, uint32_t *dinvmod)
{
    __asm__ (
            "fildl  %2\n\t"
            "fildl  (%1)\n\t"
            "fmul   %%st(1), %%st\n\t"
            "fxch   %%st(1)\n\t"
            "fildl  (%0)\n\t"
            "fmulp  %%st, %%st(1) \n\t"
            "fldt   (%4)\n\t"
            "flds   %5\n\t"
            "fld    %%st(2)\n\t"
            "fmul   %%st(2)\n\t"
            "fadd   %%st(1)\n\t"
            "fsub   %%st(1)\n\t"
            "fmull  (%3)\n\t"
            "fsubrp %%st, %%st(3)\n\t"
            "fxch   %%st(2)\n\t"
            "fistpl (%0)\n\t"
            "fmul   %%st(2)\n\t"
            "fadd   %%st(1)\n\t"
            "fsubp  %%st, %%st(1)\n\t"
            "fmull  (%3)\n\t"
            "fsubrp %%st, %%st(1)\n\t"
            "fistpl (%1)\n\t"
            : : "r" (a0), "r" (a1), "m" (w),
                "r" (dmod), "r" (dinvmod),
                "m" (MPD_TWO63)
            : "st", "memory"
    );
}

/*
 * Two modular multiplications in parallel:
 *      *a0 = (*a0 * b0) % dmod
 *      *a1 = (*a1 * b1) % dmod
 */
static inline void
ppro_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
             double *dmod, uint32_t *dinvmod)
{
    __asm__ (
            "fildl  %3\n\t"
            "fildl  (%2)\n\t"
            "fmulp  %%st, %%st(1)\n\t"
            "fildl  %1\n\t"
            "fildl  (%0)\n\t"
            "fmulp  %%st, %%st(1)\n\t"
            "fldt   (%5)\n\t"
            "fld    %%st(2)\n\t"
            "fmul   %%st(1), %%st\n\t"
            "fxch   %%st(1)\n\t"
            "fmul   %%st(2), %%st\n\t"
            "flds   %6\n\t"
            "fldl   (%4)\n\t"
            "fxch   %%st(3)\n\t"
            "fadd   %%st(1), %%st\n\t"
            "fxch   %%st(2)\n\t"
            "fadd   %%st(1), %%st\n\t"
            "fxch   %%st(2)\n\t"
            "fsub   %%st(1), %%st\n\t"
            "fxch   %%st(2)\n\t"
            "fsubp  %%st, %%st(1)\n\t"
            "fxch   %%st(1)\n\t"
            "fmul   %%st(2), %%st\n\t"
            "fxch   %%st(1)\n\t"
            "fmulp  %%st, %%st(2)\n\t"
            "fsubrp %%st, %%st(3)\n\t"
            "fsubrp %%st, %%st(1)\n\t"
            "fxch   %%st(1)\n\t"
            "fistpl (%2)\n\t"
            "fistpl (%0)\n\t"
            : : "r" (a0), "m" (b0), "r" (a1), "m" (b1),
                "r" (dmod), "r" (dinvmod),
                "m" (MPD_TWO63)
            : "st", "memory"
    );
}
/* END PPRO GCC ASM */
#elif defined(MASM)

/* Return (a * b) % dmod */
static inline mpd_uint_t __cdecl
ppro_mulmod(mpd_uint_t a, mpd_uint_t b, double *dmod, uint32_t *dinvmod)
{
    mpd_uint_t retval;

    __asm {
        mov     eax, dinvmod
        mov     edx, dmod
        fild    b
        fild    a
        fmulp   st(1), st
        fld     TBYTE PTR [eax]
        fmul    st, st(1)
        fld     MPD_TWO63
        fadd    st(1), st
        fsubp   st(1), st
        fld     QWORD PTR [edx]
        fmulp   st(1), st
        fsubp   st(1), st
        fistp   retval
    }

    return retval;
}

/*
 * Two modular multiplications in parallel:
 *      *a0 = (*a0 * w) % dmod
 *      *a1 = (*a1 * w) % dmod
 */
static inline mpd_uint_t __cdecl
ppro_mulmod2c(mpd_uint_t *a0, mpd_uint_t *a1, mpd_uint_t w,
              double *dmod, uint32_t *dinvmod)
{
    __asm {
        mov     ecx, dmod
        mov     edx, a1
        mov     ebx, dinvmod
        mov     eax, a0
        fild    w
        fild    DWORD PTR [edx]
        fmul    st, st(1)
        fxch    st(1)
        fild    DWORD PTR [eax]
        fmulp   st(1), st
        fld     TBYTE PTR [ebx]
        fld     MPD_TWO63
        fld     st(2)
        fmul    st, st(2)
        fadd    st, st(1)
        fsub    st, st(1)
        fmul    QWORD PTR [ecx]
        fsubp   st(3), st
        fxch    st(2)
        fistp   DWORD PTR [eax]
        fmul    st, st(2)
        fadd    st, st(1)
        fsubrp  st(1), st
        fmul    QWORD PTR [ecx]
        fsubp   st(1), st
        fistp   DWORD PTR [edx]
    }
}

/*
 * Two modular multiplications in parallel:
 *      *a0 = (*a0 * b0) % dmod
 *      *a1 = (*a1 * b1) % dmod
 */
static inline void __cdecl
ppro_mulmod2(mpd_uint_t *a0, mpd_uint_t b0, mpd_uint_t *a1, mpd_uint_t b1,
             double *dmod, uint32_t *dinvmod)
{
    __asm {
        mov     ecx, dmod
        mov     edx, a1
        mov     ebx, dinvmod
        mov     eax, a0
        fild    b1
        fild    DWORD PTR [edx]
        fmulp   st(1), st
        fild    b0
        fild    DWORD PTR [eax]
        fmulp   st(1), st
        fld     TBYTE PTR [ebx]
        fld     st(2)
        fmul    st, st(1)
        fxch    st(1)
        fmul    st, st(2)
        fld     DWORD PTR MPD_TWO63
        fld     QWORD PTR [ecx]
        fxch    st(3)
        fadd    st, st(1)
        fxch    st(2)
        fadd    st, st(1)
        fxch    st(2)
        fsub    st, st(1)
        fxch    st(2)
        fsubrp  st(1), st
        fxch    st(1)
        fmul    st, st(2)
        fxch    st(1)
        fmulp   st(2), st
        fsubp   st(3), st
        fsubp   st(1), st
        fxch    st(1)
        fistp   DWORD PTR [edx]
        fistp   DWORD PTR [eax]
    }
}
#endif /* PPRO MASM (_MSC_VER) */


/* Return (base ** exp) % dmod */
static inline mpd_uint_t
ppro_powmod(mpd_uint_t base, mpd_uint_t exp, double *dmod, uint32_t *dinvmod)
{
    mpd_uint_t r = 1;

    while (exp > 0) {
        if (exp & 1)
            r = ppro_mulmod(r, base, dmod, dinvmod);
        base = ppro_mulmod(base, base, dmod, dinvmod);
        exp >>= 1;
    }

    return r;
}
#endif /* PPRO */
#endif /* CONFIG_32 */


#endif /* UMODARITH_H */



back to top