# Complex numbers # --------------- # This module represents complex numbers as instances of the class Complex. # A Complex instance z has two data attribues, z.re (the real part) and z.im # (the imaginary part). In fact, z.re and z.im can have any value -- all # arithmetic operators work regardless of the type of z.re and z.im (as long # as they support numerical operations). # # The following functions exist (Complex is actually a class): # Complex([re [,im]) -> creates a complex number from a real and an imaginary part # IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes) # Polar([r [,phi [,fullcircle]]]) -> # the complex number z for which r == z.radius() and phi == z.angle(fullcircle) # (r and phi default to 0) # # Complex numbers have the following methods: # z.abs() -> absolute value of z # z.radius() == z.abs() # z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units # z.phi([fullcircle]) == z.angle(fullcircle) # # These standard functions and unary operators accept complex arguments: # abs(z) # -z # +z # not z # repr(z) == `z` # str(z) # hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero # the result equals hash(z.re) # Note that hex(z) and oct(z) are not defined. # # These conversions accept complex arguments only if their imaginary part is zero: # int(z) # long(z) # float(z) # # The following operators accept two complex numbers, or one complex number # and one real number (int, long or float): # z1 + z2 # z1 - z2 # z1 * z2 # z1 / z2 # pow(z1, z2) # cmp(z1, z2) # Note that z1 % z2 and divmod(z1, z2) are not defined, # nor are shift and mask operations. # # The standard module math does not support complex numbers. # (I suppose it would be easy to implement a cmath module.) # # Idea: # add a class Polar(r, phi) and mixed-mode arithmetic which # chooses the most appropriate type for the result: # Complex for +,-,cmp # Polar for *,/,pow import types, math if not hasattr(math, 'hypot'): def hypot(x, y): # XXX I know there's a way to compute this without possibly causing # overflow, but I can't remember what it is right now... return math.sqrt(x*x + y*y) math.hypot = hypot twopi = math.pi*2.0 halfpi = math.pi/2.0 def IsComplex(obj): return hasattr(obj, 're') and hasattr(obj, 'im') def Polar(r = 0, phi = 0, fullcircle = twopi): phi = phi * (twopi / fullcircle) return Complex(math.cos(phi)*r, math.sin(phi)*r) class Complex: def __init__(self, re=0, im=0): if IsComplex(re): im = im + re.im re = re.re if IsComplex(im): re = re - im.im im = im.re self.re = re self.im = im def __setattr__(self, name, value): if hasattr(self, name): raise TypeError, "Complex numbers have set-once attributes" self.__dict__[name] = value def __repr__(self): if not self.im: return 'Complex(%s)' % `self.re` else: return 'Complex(%s, %s)' % (`self.re`, `self.im`) def __str__(self): if not self.im: return `self.re` else: return 'Complex(%s, %s)' % (`self.re`, `self.im`) def __coerce__(self, other): if IsComplex(other): return self, other return self, Complex(other) # May fail def __cmp__(self, other): return cmp(self.re, other.re) or cmp(self.im, other.im) def __hash__(self): if not self.im: return hash(self.re) mod = sys.maxint + 1L return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod) def __neg__(self): return Complex(-self.re, -self.im) def __pos__(self): return self def __abs__(self): return math.hypot(self.re, self.im) ##return math.sqrt(self.re*self.re + self.im*self.im) def __int__(self): if self.im: raise ValueError, "can't convert Complex with nonzero im to int" return int(self.re) def __long__(self): if self.im: raise ValueError, "can't convert Complex with nonzero im to long" return long(self.re) def __float__(self): if self.im: raise ValueError, "can't convert Complex with nonzero im to float" return float(self.re) def __nonzero__(self): return not (self.re == self.im == 0) abs = radius = __abs__ def angle(self, fullcircle = twopi): return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi) phi = angle def __add__(self, other): return Complex(self.re + other.re, self.im + other.im) __radd__ = __add__ def __sub__(self, other): return Complex(self.re - other.re, self.im - other.im) def __rsub__(self, other): return Complex(other.re - self.re, other.im - self.im) def __mul__(self, other): return Complex(self.re*other.re - self.im*other.im, self.re*other.im + self.im*other.re) __rmul__ = __mul__ def __div__(self, other): # Deviating from the general principle of not forcing re or im # to be floats, we cast to float here, otherwise division # of Complex numbers with integer re and im parts would use # the (truncating) integer division d = float(other.re*other.re + other.im*other.im) if not d: raise ZeroDivisionError, 'Complex division' return Complex((self.re*other.re + self.im*other.im) / d, (self.im*other.re - self.re*other.im) / d) def __rdiv__(self, other): return other / self def __pow__(self, n, z=None): if z is not None: raise TypeError, 'Complex does not support ternary pow()' if IsComplex(n): if n.im: raise TypeError, 'Complex to the Complex power' n = n.re r = pow(self.abs(), n) phi = n*self.angle() return Complex(math.cos(phi)*r, math.sin(phi)*r) def __rpow__(self, base): return pow(base, self) # Everything below this point is part of the test suite def checkop(expr, a, b, value, fuzz = 1e-6): import sys print ' ', a, 'and', b, try: result = eval(expr) except: result = sys.exc_type print '->', result if (type(result) == type('') or type(value) == type('')): ok = result == value else: ok = abs(result - value) <= fuzz if not ok: print '!!\t!!\t!! should be', value, 'diff', abs(result - value) def test(): testsuite = { 'a+b': [ (1, 10, 11), (1, Complex(0,10), Complex(1,10)), (Complex(0,10), 1, Complex(1,10)), (Complex(0,10), Complex(1), Complex(1,10)), (Complex(1), Complex(0,10), Complex(1,10)), ], 'a-b': [ (1, 10, -9), (1, Complex(0,10), Complex(1,-10)), (Complex(0,10), 1, Complex(-1,10)), (Complex(0,10), Complex(1), Complex(-1,10)), (Complex(1), Complex(0,10), Complex(1,-10)), ], 'a*b': [ (1, 10, 10), (1, Complex(0,10), Complex(0, 10)), (Complex(0,10), 1, Complex(0,10)), (Complex(0,10), Complex(1), Complex(0,10)), (Complex(1), Complex(0,10), Complex(0,10)), ], 'a/b': [ (1., 10, 0.1), (1, Complex(0,10), Complex(0, -0.1)), (Complex(0, 10), 1, Complex(0, 10)), (Complex(0, 10), Complex(1), Complex(0, 10)), (Complex(1), Complex(0,10), Complex(0, -0.1)), ], 'pow(a,b)': [ (1, 10, 1), (1, Complex(0,10), 'TypeError'), (Complex(0,10), 1, Complex(0,10)), (Complex(0,10), Complex(1), Complex(0,10)), (Complex(1), Complex(0,10), 'TypeError'), (2, Complex(4,0), 16), ], 'cmp(a,b)': [ (1, 10, -1), (1, Complex(0,10), 1), (Complex(0,10), 1, -1), (Complex(0,10), Complex(1), -1), (Complex(1), Complex(0,10), 1), ], } exprs = testsuite.keys() exprs.sort() for expr in exprs: print expr + ':' t = (expr,) for item in testsuite[expr]: apply(checkop, t+item) if __name__ == '__main__': test()