/*********************************************************** Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. While CWI is the initial source for this software, a modified version is made available by the Corporation for National Research Initiatives (CNRI) at the Internet address ftp://ftp.python.org. STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ /* Parser generator */ /* XXX This file is not yet fully PROTOized */ /* For a description, see the comments at end of this file */ #include "pgenheaders.h" #include "assert.h" #include "token.h" #include "node.h" #include "grammar.h" #include "metagrammar.h" #include "pgen.h" extern int Py_DebugFlag; /* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */ typedef struct _nfaarc { int ar_label; int ar_arrow; } nfaarc; typedef struct _nfastate { int st_narcs; nfaarc *st_arc; } nfastate; typedef struct _nfa { int nf_type; char *nf_name; int nf_nstates; nfastate *nf_state; int nf_start, nf_finish; } nfa; /* Forward */ static void compile_rhs Py_PROTO((labellist *ll, nfa *nf, node *n, int *pa, int *pb)); static void compile_alt Py_PROTO((labellist *ll, nfa *nf, node *n, int *pa, int *pb)); static void compile_item Py_PROTO((labellist *ll, nfa *nf, node *n, int *pa, int *pb)); static void compile_atom Py_PROTO((labellist *ll, nfa *nf, node *n, int *pa, int *pb)); static int addnfastate(nf) nfa *nf; { nfastate *st; PyMem_RESIZE(nf->nf_state, nfastate, nf->nf_nstates + 1); if (nf->nf_state == NULL) Py_FatalError("out of mem"); st = &nf->nf_state[nf->nf_nstates++]; st->st_narcs = 0; st->st_arc = NULL; return st - nf->nf_state; } static void addnfaarc(nf, from, to, lbl) nfa *nf; int from, to, lbl; { nfastate *st; nfaarc *ar; st = &nf->nf_state[from]; PyMem_RESIZE(st->st_arc, nfaarc, st->st_narcs + 1); if (st->st_arc == NULL) Py_FatalError("out of mem"); ar = &st->st_arc[st->st_narcs++]; ar->ar_label = lbl; ar->ar_arrow = to; } static nfa * newnfa(name) char *name; { nfa *nf; static int type = NT_OFFSET; /* All types will be disjunct */ nf = PyMem_NEW(nfa, 1); if (nf == NULL) Py_FatalError("no mem for new nfa"); nf->nf_type = type++; nf->nf_name = name; /* XXX strdup(name) ??? */ nf->nf_nstates = 0; nf->nf_state = NULL; nf->nf_start = nf->nf_finish = -1; return nf; } typedef struct _nfagrammar { int gr_nnfas; nfa **gr_nfa; labellist gr_ll; } nfagrammar; /* Forward */ static void compile_rule Py_PROTO((nfagrammar *gr, node *n)); static nfagrammar * newnfagrammar() { nfagrammar *gr; gr = PyMem_NEW(nfagrammar, 1); if (gr == NULL) Py_FatalError("no mem for new nfa grammar"); gr->gr_nnfas = 0; gr->gr_nfa = NULL; gr->gr_ll.ll_nlabels = 0; gr->gr_ll.ll_label = NULL; addlabel(&gr->gr_ll, ENDMARKER, "EMPTY"); return gr; } static nfa * addnfa(gr, name) nfagrammar *gr; char *name; { nfa *nf; nf = newnfa(name); PyMem_RESIZE(gr->gr_nfa, nfa *, gr->gr_nnfas + 1); if (gr->gr_nfa == NULL) Py_FatalError("out of mem"); gr->gr_nfa[gr->gr_nnfas++] = nf; addlabel(&gr->gr_ll, NAME, nf->nf_name); return nf; } #ifdef Py_DEBUG static char REQNFMT[] = "metacompile: less than %d children\n"; #define REQN(i, count) \ if (i < count) { \ fprintf(stderr, REQNFMT, count); \ Py_FatalError("REQN"); \ } else #else #define REQN(i, count) /* empty */ #endif static nfagrammar * metacompile(n) node *n; { nfagrammar *gr; int i; printf("Compiling (meta-) parse tree into NFA grammar\n"); gr = newnfagrammar(); REQ(n, MSTART); i = n->n_nchildren - 1; /* Last child is ENDMARKER */ n = n->n_child; for (; --i >= 0; n++) { if (n->n_type != NEWLINE) compile_rule(gr, n); } return gr; } static void compile_rule(gr, n) nfagrammar *gr; node *n; { nfa *nf; REQ(n, RULE); REQN(n->n_nchildren, 4); n = n->n_child; REQ(n, NAME); nf = addnfa(gr, n->n_str); n++; REQ(n, COLON); n++; REQ(n, RHS); compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish); n++; REQ(n, NEWLINE); } static void compile_rhs(ll, nf, n, pa, pb) labellist *ll; nfa *nf; node *n; int *pa, *pb; { int i; int a, b; REQ(n, RHS); i = n->n_nchildren; REQN(i, 1); n = n->n_child; REQ(n, ALT); compile_alt(ll, nf, n, pa, pb); if (--i <= 0) return; n++; a = *pa; b = *pb; *pa = addnfastate(nf); *pb = addnfastate(nf); addnfaarc(nf, *pa, a, EMPTY); addnfaarc(nf, b, *pb, EMPTY); for (; --i >= 0; n++) { REQ(n, VBAR); REQN(i, 1); --i; n++; REQ(n, ALT); compile_alt(ll, nf, n, &a, &b); addnfaarc(nf, *pa, a, EMPTY); addnfaarc(nf, b, *pb, EMPTY); } } static void compile_alt(ll, nf, n, pa, pb) labellist *ll; nfa *nf; node *n; int *pa, *pb; { int i; int a, b; REQ(n, ALT); i = n->n_nchildren; REQN(i, 1); n = n->n_child; REQ(n, ITEM); compile_item(ll, nf, n, pa, pb); --i; n++; for (; --i >= 0; n++) { if (n->n_type == COMMA) { /* XXX Temporary */ REQN(i, 1); --i; n++; } REQ(n, ITEM); compile_item(ll, nf, n, &a, &b); addnfaarc(nf, *pb, a, EMPTY); *pb = b; } } static void compile_item(ll, nf, n, pa, pb) labellist *ll; nfa *nf; node *n; int *pa, *pb; { int i; int a, b; REQ(n, ITEM); i = n->n_nchildren; REQN(i, 1); n = n->n_child; if (n->n_type == LSQB) { REQN(i, 3); n++; REQ(n, RHS); *pa = addnfastate(nf); *pb = addnfastate(nf); addnfaarc(nf, *pa, *pb, EMPTY); compile_rhs(ll, nf, n, &a, &b); addnfaarc(nf, *pa, a, EMPTY); addnfaarc(nf, b, *pb, EMPTY); REQN(i, 1); n++; REQ(n, RSQB); } else { compile_atom(ll, nf, n, pa, pb); if (--i <= 0) return; n++; addnfaarc(nf, *pb, *pa, EMPTY); if (n->n_type == STAR) *pb = *pa; else REQ(n, PLUS); } } static void compile_atom(ll, nf, n, pa, pb) labellist *ll; nfa *nf; node *n; int *pa, *pb; { int i; REQ(n, ATOM); i = n->n_nchildren; REQN(i, 1); n = n->n_child; if (n->n_type == LPAR) { REQN(i, 3); n++; REQ(n, RHS); compile_rhs(ll, nf, n, pa, pb); n++; REQ(n, RPAR); } else if (n->n_type == NAME || n->n_type == STRING) { *pa = addnfastate(nf); *pb = addnfastate(nf); addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str)); } else REQ(n, NAME); } static void dumpstate(ll, nf, istate) labellist *ll; nfa *nf; int istate; { nfastate *st; int i; nfaarc *ar; printf("%c%2d%c", istate == nf->nf_start ? '*' : ' ', istate, istate == nf->nf_finish ? '.' : ' '); st = &nf->nf_state[istate]; ar = st->st_arc; for (i = 0; i < st->st_narcs; i++) { if (i > 0) printf("\n "); printf("-> %2d %s", ar->ar_arrow, PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label])); ar++; } printf("\n"); } static void dumpnfa(ll, nf) labellist *ll; nfa *nf; { int i; printf("NFA '%s' has %d states; start %d, finish %d\n", nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish); for (i = 0; i < nf->nf_nstates; i++) dumpstate(ll, nf, i); } /* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */ static void addclosure(ss, nf, istate) bitset ss; nfa *nf; int istate; { if (addbit(ss, istate)) { nfastate *st = &nf->nf_state[istate]; nfaarc *ar = st->st_arc; int i; for (i = st->st_narcs; --i >= 0; ) { if (ar->ar_label == EMPTY) addclosure(ss, nf, ar->ar_arrow); ar++; } } } typedef struct _ss_arc { bitset sa_bitset; int sa_arrow; int sa_label; } ss_arc; typedef struct _ss_state { bitset ss_ss; int ss_narcs; ss_arc *ss_arc; int ss_deleted; int ss_finish; int ss_rename; } ss_state; typedef struct _ss_dfa { int sd_nstates; ss_state *sd_state; } ss_dfa; /* Forward */ static void printssdfa Py_PROTO((int xx_nstates, ss_state *xx_state, int nbits, labellist *ll, char *msg)); static void simplify Py_PROTO((int xx_nstates, ss_state *xx_state)); static void convert Py_PROTO((dfa *d, int xx_nstates, ss_state *xx_state)); static void makedfa(gr, nf, d) nfagrammar *gr; nfa *nf; dfa *d; { int nbits = nf->nf_nstates; bitset ss; int xx_nstates; ss_state *xx_state, *yy; ss_arc *zz; int istate, jstate, iarc, jarc, ibit; nfastate *st; nfaarc *ar; ss = newbitset(nbits); addclosure(ss, nf, nf->nf_start); xx_state = PyMem_NEW(ss_state, 1); if (xx_state == NULL) Py_FatalError("no mem for xx_state in makedfa"); xx_nstates = 1; yy = &xx_state[0]; yy->ss_ss = ss; yy->ss_narcs = 0; yy->ss_arc = NULL; yy->ss_deleted = 0; yy->ss_finish = testbit(ss, nf->nf_finish); if (yy->ss_finish) printf("Error: nonterminal '%s' may produce empty.\n", nf->nf_name); /* This algorithm is from a book written before the invention of structured programming... */ /* For each unmarked state... */ for (istate = 0; istate < xx_nstates; ++istate) { yy = &xx_state[istate]; ss = yy->ss_ss; /* For all its states... */ for (ibit = 0; ibit < nf->nf_nstates; ++ibit) { if (!testbit(ss, ibit)) continue; st = &nf->nf_state[ibit]; /* For all non-empty arcs from this state... */ for (iarc = 0; iarc < st->st_narcs; iarc++) { ar = &st->st_arc[iarc]; if (ar->ar_label == EMPTY) continue; /* Look up in list of arcs from this state */ for (jarc = 0; jarc < yy->ss_narcs; ++jarc) { zz = &yy->ss_arc[jarc]; if (ar->ar_label == zz->sa_label) goto found; } /* Add new arc for this state */ PyMem_RESIZE(yy->ss_arc, ss_arc, yy->ss_narcs + 1); if (yy->ss_arc == NULL) Py_FatalError("out of mem"); zz = &yy->ss_arc[yy->ss_narcs++]; zz->sa_label = ar->ar_label; zz->sa_bitset = newbitset(nbits); zz->sa_arrow = -1; found: ; /* Add destination */ addclosure(zz->sa_bitset, nf, ar->ar_arrow); } } /* Now look up all the arrow states */ for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) { zz = &xx_state[istate].ss_arc[jarc]; for (jstate = 0; jstate < xx_nstates; jstate++) { if (samebitset(zz->sa_bitset, xx_state[jstate].ss_ss, nbits)) { zz->sa_arrow = jstate; goto done; } } PyMem_RESIZE(xx_state, ss_state, xx_nstates + 1); if (xx_state == NULL) Py_FatalError("out of mem"); zz->sa_arrow = xx_nstates; yy = &xx_state[xx_nstates++]; yy->ss_ss = zz->sa_bitset; yy->ss_narcs = 0; yy->ss_arc = NULL; yy->ss_deleted = 0; yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish); done: ; } } if (Py_DebugFlag) printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, "before minimizing"); simplify(xx_nstates, xx_state); if (Py_DebugFlag) printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, "after minimizing"); convert(d, xx_nstates, xx_state); /* XXX cleanup */ } static void printssdfa(xx_nstates, xx_state, nbits, ll, msg) int xx_nstates; ss_state *xx_state; int nbits; labellist *ll; char *msg; { int i, ibit, iarc; ss_state *yy; ss_arc *zz; printf("Subset DFA %s\n", msg); for (i = 0; i < xx_nstates; i++) { yy = &xx_state[i]; if (yy->ss_deleted) continue; printf(" Subset %d", i); if (yy->ss_finish) printf(" (finish)"); printf(" { "); for (ibit = 0; ibit < nbits; ibit++) { if (testbit(yy->ss_ss, ibit)) printf("%d ", ibit); } printf("}\n"); for (iarc = 0; iarc < yy->ss_narcs; iarc++) { zz = &yy->ss_arc[iarc]; printf(" Arc to state %d, label %s\n", zz->sa_arrow, PyGrammar_LabelRepr( &ll->ll_label[zz->sa_label])); } } } /* PART THREE -- SIMPLIFY DFA */ /* Simplify the DFA by repeatedly eliminating states that are equivalent to another oner. This is NOT Algorithm 3.3 from [Aho&Ullman 77]. It does not always finds the minimal DFA, but it does usually make a much smaller one... (For an example of sub-optimal behaviour, try S: x a b+ | y a b+.) */ static int samestate(s1, s2) ss_state *s1, *s2; { int i; if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish) return 0; for (i = 0; i < s1->ss_narcs; i++) { if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow || s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label) return 0; } return 1; } static void renamestates(xx_nstates, xx_state, from, to) int xx_nstates; ss_state *xx_state; int from, to; { int i, j; if (Py_DebugFlag) printf("Rename state %d to %d.\n", from, to); for (i = 0; i < xx_nstates; i++) { if (xx_state[i].ss_deleted) continue; for (j = 0; j < xx_state[i].ss_narcs; j++) { if (xx_state[i].ss_arc[j].sa_arrow == from) xx_state[i].ss_arc[j].sa_arrow = to; } } } static void simplify(xx_nstates, xx_state) int xx_nstates; ss_state *xx_state; { int changes; int i, j; do { changes = 0; for (i = 1; i < xx_nstates; i++) { if (xx_state[i].ss_deleted) continue; for (j = 0; j < i; j++) { if (xx_state[j].ss_deleted) continue; if (samestate(&xx_state[i], &xx_state[j])) { xx_state[i].ss_deleted++; renamestates(xx_nstates, xx_state, i, j); changes++; break; } } } } while (changes); } /* PART FOUR -- GENERATE PARSING TABLES */ /* Convert the DFA into a grammar that can be used by our parser */ static void convert(d, xx_nstates, xx_state) dfa *d; int xx_nstates; ss_state *xx_state; { int i, j; ss_state *yy; ss_arc *zz; for (i = 0; i < xx_nstates; i++) { yy = &xx_state[i]; if (yy->ss_deleted) continue; yy->ss_rename = addstate(d); } for (i = 0; i < xx_nstates; i++) { yy = &xx_state[i]; if (yy->ss_deleted) continue; for (j = 0; j < yy->ss_narcs; j++) { zz = &yy->ss_arc[j]; addarc(d, yy->ss_rename, xx_state[zz->sa_arrow].ss_rename, zz->sa_label); } if (yy->ss_finish) addarc(d, yy->ss_rename, yy->ss_rename, 0); } d->d_initial = 0; } /* PART FIVE -- GLUE IT ALL TOGETHER */ static grammar * maketables(gr) nfagrammar *gr; { int i; nfa *nf; dfa *d; grammar *g; if (gr->gr_nnfas == 0) return NULL; g = newgrammar(gr->gr_nfa[0]->nf_type); /* XXX first rule must be start rule */ g->g_ll = gr->gr_ll; for (i = 0; i < gr->gr_nnfas; i++) { nf = gr->gr_nfa[i]; if (Py_DebugFlag) { printf("Dump of NFA for '%s' ...\n", nf->nf_name); dumpnfa(&gr->gr_ll, nf); } printf("Making DFA for '%s' ...\n", nf->nf_name); d = adddfa(g, nf->nf_type, nf->nf_name); makedfa(gr, gr->gr_nfa[i], d); } return g; } grammar * pgen(n) node *n; { nfagrammar *gr; grammar *g; gr = metacompile(n); g = maketables(gr); translatelabels(g); addfirstsets(g); return g; } /* Description ----------- Input is a grammar in extended BNF (using * for repetition, + for at-least-once repetition, [] for optional parts, | for alternatives and () for grouping). This has already been parsed and turned into a parse tree. Each rule is considered as a regular expression in its own right. It is turned into a Non-deterministic Finite Automaton (NFA), which is then turned into a Deterministic Finite Automaton (DFA), which is then optimized to reduce the number of states. See [Aho&Ullman 77] chapter 3, or similar compiler books (this technique is more often used for lexical analyzers). The DFA's are used by the parser as parsing tables in a special way that's probably unique. Before they are usable, the FIRST sets of all non-terminals are computed. Reference --------- [Aho&Ullman 77] Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977 (first edition) */