# -*- Mode: Python; tab-width: 4 -*- # Id: asyncore.py,v 2.40 1999/05/27 04:08:25 rushing Exp # Author: Sam Rushing # ====================================================================== # Copyright 1996 by Sam Rushing # # All Rights Reserved # # Permission to use, copy, modify, and distribute this software and # its documentation for any purpose and without fee is hereby # granted, provided that the above copyright notice appear in all # copies and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of Sam # Rushing not be used in advertising or publicity pertaining to # distribution of the software without specific, written prior # permission. # # SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, # INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN # NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR # CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS # OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, # NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # ====================================================================== """Basic infrastructure for asynchronous socket service clients and servers. There are only two ways to have a program on a single processor do "more than one thing at a time". Multi-threaded programming is the simplest and most popular way to do it, but there is another very different technique, that lets you have nearly all the advantages of multi-threading, without actually using multiple threads. it's really only practical if your program is largely I/O bound. If your program is CPU bound, then pre-emptive scheduled threads are probably what you really need. Network servers are rarely CPU-bound, however. If your operating system supports the select() system call in its I/O library (and nearly all do), then you can use it to juggle multiple communication channels at once; doing other work while your I/O is taking place in the "background." Although this strategy can seem strange and complex, especially at first, it is in many ways easier to understand and control than multi-threaded programming. The module documented here solves many of the difficult problems for you, making the task of building sophisticated high-performance network servers and clients a snap. """ import select import socket import string import sys import os if os.name == 'nt': EWOULDBLOCK = 10035 EINPROGRESS = 10036 EALREADY = 10037 ECONNRESET = 10054 ENOTCONN = 10057 ESHUTDOWN = 10058 else: from errno import EALREADY, EINPROGRESS, EWOULDBLOCK, ECONNRESET, ENOTCONN, ESHUTDOWN socket_map = {} def poll (timeout=0.0): if socket_map: r = []; w = []; e = [] for s in socket_map.keys(): if s.readable(): r.append (s) if s.writable(): w.append (s) (r,w,e) = select.select (r,w,e, timeout) for x in r: try: x.handle_read_event() except: x.handle_error() for x in w: try: x.handle_write_event() except: x.handle_error() def poll2 (timeout=0.0): import poll # timeout is in milliseconds timeout = int(timeout*1000) if socket_map: fd_map = {} for s in socket_map.keys(): fd_map[s.fileno()] = s l = [] for fd, s in fd_map.items(): flags = 0 if s.readable(): flags = poll.POLLIN if s.writable(): flags = flags | poll.POLLOUT if flags: l.append ((fd, flags)) r = poll.poll (l, timeout) for fd, flags in r: s = fd_map[fd] try: if (flags & poll.POLLIN): s.handle_read_event() if (flags & poll.POLLOUT): s.handle_write_event() if (flags & poll.POLLERR): s.handle_expt_event() except: s.handle_error() def loop (timeout=30.0, use_poll=0): if use_poll: poll_fun = poll2 else: poll_fun = poll while socket_map: poll_fun (timeout) class dispatcher: debug = 0 connected = 0 accepting = 0 closing = 0 addr = None def __init__ (self, sock=None): if sock: self.set_socket (sock) # I think it should inherit this anyway self.socket.setblocking (0) self.connected = 1 def __repr__ (self): try: status = [] if self.accepting and self.addr: status.append ('listening') elif self.connected: status.append ('connected') if self.addr: status.append ('%s:%d' % self.addr) return '<%s %s at %x>' % ( self.__class__.__name__, string.join (status, ' '), id(self) ) except: try: ar = repr(self.addr) except: ar = 'no self.addr!' return '<__repr__ (self) failed for object at %x (addr=%s)>' % (id(self),ar) def add_channel (self): if __debug__: self.log ('adding channel %s' % self) socket_map [self] = 1 def del_channel (self): if socket_map.has_key (self): if __debug__: self.log ('closing channel %d:%s' % (self.fileno(), self)) del socket_map [self] def create_socket (self, family, type): self.family_and_type = family, type self.socket = socket.socket (family, type) self.socket.setblocking(0) self.add_channel() def set_socket (self, socket): # This is done so we can be called safely from __init__ self.__dict__['socket'] = socket self.add_channel() def set_reuse_addr (self): # try to re-use a server port if possible try: self.socket.setsockopt ( socket.SOL_SOCKET, socket.SO_REUSEADDR, self.socket.getsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR) | 1 ) except: pass # ================================================== # predicates for select() # these are used as filters for the lists of sockets # to pass to select(). # ================================================== def readable (self): return 1 if os.name == 'mac': # The macintosh will select a listening socket for # write if you let it. What might this mean? def writable (self): return not self.accepting else: def writable (self): return 1 # ================================================== # socket object methods. # ================================================== def listen (self, num): self.accepting = 1 if os.name == 'nt' and num > 5: num = 1 return self.socket.listen (num) def bind (self, addr): self.addr = addr return self.socket.bind (addr) def connect (self, address): self.connected = 0 try: self.socket.connect (address) except socket.error, why: if why[0] in (EINPROGRESS, EALREADY, EWOULDBLOCK): return else: raise socket.error, why self.connected = 1 self.handle_connect() def accept (self): try: conn, addr = self.socket.accept() return conn, addr except socket.error, why: if why[0] == EWOULDBLOCK: pass else: raise socket.error, why def send (self, data): try: result = self.socket.send (data) return result except socket.error, why: if why[0] == EWOULDBLOCK: return 0 else: raise socket.error, why return 0 def recv (self, buffer_size): try: data = self.socket.recv (buffer_size) if not data: # a closed connection is indicated by signaling # a read condition, and having recv() return 0. self.handle_close() return '' else: return data except socket.error, why: # winsock sometimes throws ENOTCONN if why[0] in [ECONNRESET, ENOTCONN, ESHUTDOWN]: self.handle_close() return '' else: raise socket.error, why def close (self): self.del_channel() self.socket.close() # cheap inheritance, used to pass all other attribute # references to the underlying socket object. # NOTE: this may be removed soon for performance reasons. def __getattr__ (self, attr): return getattr (self.socket, attr) def log (self, message): print 'log:', message def handle_read_event (self): if self.accepting: # for an accepting socket, getting a read implies # that we are connected if not self.connected: self.connected = 1 self.handle_accept() elif not self.connected: self.handle_connect() self.connected = 1 self.handle_read() else: self.handle_read() def handle_write_event (self): # getting a write implies that we are connected if not self.connected: self.handle_connect() self.connected = 1 self.handle_write() def handle_expt_event (self): self.handle_expt() def handle_error (self): (file,fun,line), t, v, tbinfo = compact_traceback() # sometimes a user repr method will crash. try: self_repr = repr (self) except: self_repr = '<__repr__ (self) failed for object at %0x>' % id(self) print ( 'uncaptured python exception, closing channel %s (%s:%s %s)' % ( self_repr, t, v, tbinfo ) ) self.close() def handle_expt (self): if __debug__: self.log ('unhandled exception') def handle_read (self): if __debug__: self.log ('unhandled read event') def handle_write (self): if __debug__: self.log ('unhandled write event') def handle_connect (self): if __debug__: self.log ('unhandled connect event') def handle_accept (self): if __debug__: self.log ('unhandled accept event') def handle_close (self): if __debug__: self.log ('unhandled close event') self.close() # --------------------------------------------------------------------------- # adds simple buffered output capability, useful for simple clients. # [for more sophisticated usage use asynchat.async_chat] # --------------------------------------------------------------------------- class dispatcher_with_send (dispatcher): def __init__ (self, sock=None): dispatcher.__init__ (self, sock) self.out_buffer = '' def initiate_send (self): num_sent = 0 num_sent = dispatcher.send (self, self.out_buffer[:512]) self.out_buffer = self.out_buffer[num_sent:] def handle_write (self): self.initiate_send() def writable (self): return (not self.connected) or len(self.out_buffer) def send (self, data): if self.debug: self.log ('sending %s' % repr(data)) self.out_buffer = self.out_buffer + data self.initiate_send() # --------------------------------------------------------------------------- # used for debugging. # --------------------------------------------------------------------------- def compact_traceback (): t,v,tb = sys.exc_info() tbinfo = [] while 1: tbinfo.append (( tb.tb_frame.f_code.co_filename, tb.tb_frame.f_code.co_name, str(tb.tb_lineno) )) tb = tb.tb_next if not tb: break # just to be safe del tb file, function, line = tbinfo[-1] info = '[' + string.join ( map ( lambda x: string.join (x, '|'), tbinfo ), '] [' ) + ']' return (file, function, line), t, v, info def close_all (): global socket_map for x in socket_map.keys(): x.socket.close() socket_map.clear() # Asynchronous File I/O: # # After a little research (reading man pages on various unixen, and # digging through the linux kernel), I've determined that select() # isn't meant for doing doing asynchronous file i/o. # Heartening, though - reading linux/mm/filemap.c shows that linux # supports asynchronous read-ahead. So _MOST_ of the time, the data # will be sitting in memory for us already when we go to read it. # # What other OS's (besides NT) support async file i/o? [VMS?] # # Regardless, this is useful for pipes, and stdin/stdout... import os if os.name == 'posix': import fcntl import FCNTL class file_wrapper: # here we override just enough to make a file # look like a socket for the purposes of asyncore. def __init__ (self, fd): self.fd = fd def recv (self, *args): return apply (os.read, (self.fd,)+args) def write (self, *args): return apply (os.write, (self.fd,)+args) def close (self): return os.close (self.fd) def fileno (self): return self.fd class file_dispatcher (dispatcher): def __init__ (self, fd): dispatcher.__init__ (self) self.connected = 1 # set it to non-blocking mode flags = fcntl.fcntl (fd, FCNTL.F_GETFL, 0) flags = flags | FCNTL.O_NONBLOCK fcntl.fcntl (fd, FCNTL.F_SETFL, flags) self.set_file (fd) def set_file (self, fd): self.socket = file_wrapper (fd) self.add_channel()