/*********************************************************** Copyright 1991, 1992, 1993, 1994 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ /* Parser implementation */ /* For a description, see the comments at end of this file */ /* XXX To do: error recovery */ #include "pgenheaders.h" #include "assert.h" #include "token.h" #include "grammar.h" #include "node.h" #include "parser.h" #include "errcode.h" #ifdef DEBUG extern int debugging; #define D(x) if (!debugging); else x #else #define D(x) #endif /* STACK DATA TYPE */ static void s_reset PROTO((stack *)); static void s_reset(s) stack *s; { s->s_top = &s->s_base[MAXSTACK]; } #define s_empty(s) ((s)->s_top == &(s)->s_base[MAXSTACK]) static int s_push PROTO((stack *, dfa *, node *)); static int s_push(s, d, parent) register stack *s; dfa *d; node *parent; { register stackentry *top; if (s->s_top == s->s_base) { fprintf(stderr, "s_push: parser stack overflow\n"); return -1; } top = --s->s_top; top->s_dfa = d; top->s_parent = parent; top->s_state = 0; return 0; } #ifdef DEBUG static void s_pop PROTO((stack *)); static void s_pop(s) register stack *s; { if (s_empty(s)) { fprintf(stderr, "s_pop: parser stack underflow -- FATAL\n"); abort(); } s->s_top++; } #else /* !DEBUG */ #define s_pop(s) (s)->s_top++ #endif /* PARSER CREATION */ parser_state * newparser(g, start) grammar *g; int start; { parser_state *ps; if (!g->g_accel) addaccelerators(g); ps = NEW(parser_state, 1); if (ps == NULL) return NULL; ps->p_grammar = g; ps->p_tree = newtree(start); if (ps->p_tree == NULL) { DEL(ps); return NULL; } s_reset(&ps->p_stack); (void) s_push(&ps->p_stack, finddfa(g, start), ps->p_tree); return ps; } void delparser(ps) parser_state *ps; { /* NB If you want to save the parse tree, you must set p_tree to NULL before calling delparser! */ freetree(ps->p_tree); DEL(ps); } /* PARSER STACK OPERATIONS */ static int shift PROTO((stack *, int, char *, int, int)); static int shift(s, type, str, newstate, lineno) register stack *s; int type; char *str; int newstate; int lineno; { assert(!s_empty(s)); if (addchild(s->s_top->s_parent, type, str, lineno) == NULL) { fprintf(stderr, "shift: no mem in addchild\n"); return -1; } s->s_top->s_state = newstate; return 0; } static int push PROTO((stack *, int, dfa *, int, int)); static int push(s, type, d, newstate, lineno) register stack *s; int type; dfa *d; int newstate; int lineno; { register node *n; n = s->s_top->s_parent; assert(!s_empty(s)); if (addchild(n, type, (char *)NULL, lineno) == NULL) { fprintf(stderr, "push: no mem in addchild\n"); return -1; } s->s_top->s_state = newstate; return s_push(s, d, CHILD(n, NCH(n)-1)); } /* PARSER PROPER */ static int classify PROTO((grammar *, int, char *)); static int classify(g, type, str) grammar *g; register int type; char *str; { register int n = g->g_ll.ll_nlabels; if (type == NAME) { register char *s = str; register label *l = g->g_ll.ll_label; register int i; for (i = n; i > 0; i--, l++) { if (l->lb_type == NAME && l->lb_str != NULL && l->lb_str[0] == s[0] && strcmp(l->lb_str, s) == 0) { D(printf("It's a keyword\n")); return n - i; } } } { register label *l = g->g_ll.ll_label; register int i; for (i = n; i > 0; i--, l++) { if (l->lb_type == type && l->lb_str == NULL) { D(printf("It's a token we know\n")); return n - i; } } } D(printf("Illegal token\n")); return -1; } int addtoken(ps, type, str, lineno) register parser_state *ps; register int type; char *str; int lineno; { register int ilabel; D(printf("Token %s/'%s' ... ", tok_name[type], str)); /* Find out which label this token is */ ilabel = classify(ps->p_grammar, type, str); if (ilabel < 0) return E_SYNTAX; /* Loop until the token is shifted or an error occurred */ for (;;) { /* Fetch the current dfa and state */ register dfa *d = ps->p_stack.s_top->s_dfa; register state *s = &d->d_state[ps->p_stack.s_top->s_state]; D(printf(" DFA '%s', state %d:", d->d_name, ps->p_stack.s_top->s_state)); /* Check accelerator */ if (s->s_lower <= ilabel && ilabel < s->s_upper) { register int x = s->s_accel[ilabel - s->s_lower]; if (x != -1) { if (x & (1<<7)) { /* Push non-terminal */ int nt = (x >> 8) + NT_OFFSET; int arrow = x & ((1<<7)-1); dfa *d1 = finddfa(ps->p_grammar, nt); if (push(&ps->p_stack, nt, d1, arrow, lineno) < 0) { D(printf(" MemError: push.\n")); return E_NOMEM; } D(printf(" Push ...\n")); continue; } /* Shift the token */ if (shift(&ps->p_stack, type, str, x, lineno) < 0) { D(printf(" MemError: shift.\n")); return E_NOMEM; } D(printf(" Shift.\n")); /* Pop while we are in an accept-only state */ while (s = &d->d_state [ps->p_stack.s_top->s_state], s->s_accept && s->s_narcs == 1) { D(printf(" Direct pop.\n")); s_pop(&ps->p_stack); if (s_empty(&ps->p_stack)) { D(printf(" ACCEPT.\n")); return E_DONE; } d = ps->p_stack.s_top->s_dfa; } return E_OK; } } if (s->s_accept) { /* Pop this dfa and try again */ s_pop(&ps->p_stack); D(printf(" Pop ...\n")); if (s_empty(&ps->p_stack)) { D(printf(" Error: bottom of stack.\n")); return E_SYNTAX; } continue; } /* Stuck, report syntax error */ D(printf(" Error.\n")); return E_SYNTAX; } } #ifdef DEBUG /* DEBUG OUTPUT */ void dumptree(g, n) grammar *g; node *n; { int i; if (n == NULL) printf("NIL"); else { label l; l.lb_type = TYPE(n); l.lb_str = STR(n); printf("%s", labelrepr(&l)); if (ISNONTERMINAL(TYPE(n))) { printf("("); for (i = 0; i < NCH(n); i++) { if (i > 0) printf(","); dumptree(g, CHILD(n, i)); } printf(")"); } } } void showtree(g, n) grammar *g; node *n; { int i; if (n == NULL) return; if (ISNONTERMINAL(TYPE(n))) { for (i = 0; i < NCH(n); i++) showtree(g, CHILD(n, i)); } else if (ISTERMINAL(TYPE(n))) { printf("%s", tok_name[TYPE(n)]); if (TYPE(n) == NUMBER || TYPE(n) == NAME) printf("(%s)", STR(n)); printf(" "); } else printf("? "); } void printtree(ps) parser_state *ps; { if (debugging) { printf("Parse tree:\n"); dumptree(ps->p_grammar, ps->p_tree); printf("\n"); printf("Tokens:\n"); showtree(ps->p_grammar, ps->p_tree); printf("\n"); } printf("Listing:\n"); listtree(ps->p_tree); printf("\n"); } #endif /* DEBUG */ /* Description ----------- The parser's interface is different than usual: the function addtoken() must be called for each token in the input. This makes it possible to turn it into an incremental parsing system later. The parsing system constructs a parse tree as it goes. A parsing rule is represented as a Deterministic Finite-state Automaton (DFA). A node in a DFA represents a state of the parser; an arc represents a transition. Transitions are either labeled with terminal symbols or with non-terminals. When the parser decides to follow an arc labeled with a non-terminal, it is invoked recursively with the DFA representing the parsing rule for that as its initial state; when that DFA accepts, the parser that invoked it continues. The parse tree constructed by the recursively called parser is inserted as a child in the current parse tree. The DFA's can be constructed automatically from a more conventional language description. An extended LL(1) grammar (ELL(1)) is suitable. Certain restrictions make the parser's life easier: rules that can produce the empty string should be outlawed (there are other ways to put loops or optional parts in the language). To avoid the need to construct FIRST sets, we can require that all but the last alternative of a rule (really: arc going out of a DFA's state) must begin with a terminal symbol. As an example, consider this grammar: expr: term (OP term)* term: CONSTANT | '(' expr ')' The DFA corresponding to the rule for expr is: ------->.---term-->.-------> ^ | | | \----OP----/ The parse tree generated for the input a+b is: (expr: (term: (NAME: a)), (OP: +), (term: (NAME: b))) */