/* Dictionary object implementation using a hash table */ #include "Python.h" /* * MINSIZE is the minimum size of a dictionary. */ #define MINSIZE 4 /* define this out if you don't want conversion statistics on exit */ #undef SHOW_CONVERSION_COUNTS /* Table of irreducible polynomials to efficiently cycle through GF(2^n)-{0}, 2<=n<=30. */ static long polys[] = { 4 + 3, 8 + 3, 16 + 3, 32 + 5, 64 + 3, 128 + 3, 256 + 29, 512 + 17, 1024 + 9, 2048 + 5, 4096 + 83, 8192 + 27, 16384 + 43, 32768 + 3, 65536 + 45, 131072 + 9, 262144 + 39, 524288 + 39, 1048576 + 9, 2097152 + 5, 4194304 + 3, 8388608 + 33, 16777216 + 27, 33554432 + 9, 67108864 + 71, 134217728 + 39, 268435456 + 9, 536870912 + 5, 1073741824 + 83, 0 }; /* Object used as dummy key to fill deleted entries */ static PyObject *dummy; /* Initialized by first call to newdictobject() */ /* Invariant for entries: when in use, me_value is not NULL and me_key is not NULL and not dummy; when not in use, me_value is NULL and me_key is either NULL or dummy. A dummy key value cannot be replaced by NULL, since otherwise other keys may be lost. */ typedef struct { long me_hash; PyObject *me_key; PyObject *me_value; #ifdef USE_CACHE_ALIGNED long aligner; #endif } dictentry; /* To ensure the lookup algorithm terminates, the table size must be a prime number and there must be at least one NULL key in the table. The value ma_fill is the number of non-NULL keys; ma_used is the number of non-NULL, non-dummy keys. To avoid slowing down lookups on a near-full table, we resize the table when it is more than half filled. */ typedef struct dictobject dictobject; struct dictobject { PyObject_HEAD int ma_fill; int ma_used; int ma_size; int ma_poly; dictentry *ma_table; dictentry *(*ma_lookup)(dictobject *mp, PyObject *key, long hash); }; /* forward declarations */ static dictentry * lookdict_string(dictobject *mp, PyObject *key, long hash); #ifdef SHOW_CONVERSION_COUNTS static long created = 0L; static long converted = 0L; static void show_counts(void) { fprintf(stderr, "created %ld string dicts\n", created); fprintf(stderr, "converted %ld to normal dicts\n", converted); fprintf(stderr, "%.2f%% conversion rate\n", (100.0*converted)/created); } #endif PyObject * PyDict_New(void) { register dictobject *mp; if (dummy == NULL) { /* Auto-initialize dummy */ dummy = PyString_FromString(""); if (dummy == NULL) return NULL; #ifdef SHOW_CONVERSION_COUNTS Py_AtExit(show_counts); #endif } mp = PyObject_NEW(dictobject, &PyDict_Type); if (mp == NULL) return NULL; mp->ma_size = 0; mp->ma_poly = 0; mp->ma_table = NULL; mp->ma_fill = 0; mp->ma_used = 0; mp->ma_lookup = lookdict_string; #ifdef SHOW_CONVERSION_COUNTS ++created; #endif PyObject_GC_Init(mp); return (PyObject *)mp; } /* The basic lookup function used by all operations. This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4. Open addressing is preferred over chaining since the link overhead for chaining would be substantial (100% with typical malloc overhead). However, instead of going through the table at constant steps, we cycle through the values of GF(2^n)-{0}. This avoids modulo computations, being much cheaper on RISC machines, without leading to clustering. The initial probe index is computed as hash mod the table size. Subsequent probe indices use the values of x^i in GF(2^n) as an offset, where x is a root. The initial value is derived from hash, too. All arithmetic on hash should ignore overflow. (This version is due to Reimer Behrends, some ideas are also due to Jyrki Alakuijala and Vladimir Marangozov.) This function must never return NULL; failures are indicated by returning a dictentry* for which the me_value field is NULL. Exceptions are never reported by this function, and outstanding exceptions are maintained. */ static dictentry * lookdict(dictobject *mp, PyObject *key, register long hash) { register int i; register unsigned incr; register dictentry *freeslot; register unsigned int mask = mp->ma_size-1; dictentry *ep0 = mp->ma_table; register dictentry *ep; register int restore_error = 0; register int checked_error = 0; register int cmp; PyObject *err_type, *err_value, *err_tb; /* We must come up with (i, incr) such that 0 <= i < ma_size and 0 < incr < ma_size and both are a function of hash */ i = (~hash) & mask; /* We use ~hash instead of hash, as degenerate hash functions, such as for ints , can have lots of leading zeros. It's not really a performance risk, but better safe than sorry. */ ep = &ep0[i]; if (ep->me_key == NULL || ep->me_key == key) return ep; if (ep->me_key == dummy) freeslot = ep; else { if (ep->me_hash == hash) { /* error can't have been checked yet */ checked_error = 1; if (PyErr_Occurred()) { restore_error = 1; PyErr_Fetch(&err_type, &err_value, &err_tb); } cmp = PyObject_Compare(ep->me_key, key); if (PyErr_Occurred()) PyErr_Clear(); else if (cmp == 0) { if (restore_error) PyErr_Restore(err_type, err_value, err_tb); return ep; } } freeslot = NULL; } /* Derive incr from hash, just to make it more arbitrary. Note that incr must not be 0, or we will get into an infinite loop.*/ incr = (hash ^ ((unsigned long)hash >> 3)) & mask; if (!incr) incr = mask; for (;;) { ep = &ep0[(i+incr)&mask]; if (ep->me_key == NULL) { if (restore_error) PyErr_Restore(err_type, err_value, err_tb); if (freeslot != NULL) return freeslot; else return ep; } if (ep->me_key == dummy) { if (freeslot == NULL) freeslot = ep; } else if (ep->me_key == key) { if (restore_error) PyErr_Restore(err_type, err_value, err_tb); return ep; } else if (ep->me_hash == hash) { if (!checked_error) { checked_error = 1; if (PyErr_Occurred()) { restore_error = 1; PyErr_Fetch(&err_type, &err_value, &err_tb); } } cmp = PyObject_Compare(ep->me_key, key); if (PyErr_Occurred()) PyErr_Clear(); else if (cmp == 0) { if (restore_error) PyErr_Restore(err_type, err_value, err_tb); return ep; } } /* Cycle through GF(2^n)-{0} */ incr = incr << 1; if (incr > mask) incr ^= mp->ma_poly; /* This will implicitly clear the highest bit */ } } /* * Hacked up version of lookdict which can assume keys are always strings; * this assumption allows testing for errors during PyObject_Compare() to * be dropped; string-string comparisons never raise exceptions. This also * means we don't need to go through PyObject_Compare(); we can always use * the tp_compare slot of the string type object directly. * * This really only becomes meaningful if proper error handling in lookdict() * is too expensive. */ static dictentry * lookdict_string(dictobject *mp, PyObject *key, register long hash) { register int i; register unsigned incr; register dictentry *freeslot; register unsigned int mask = mp->ma_size-1; dictentry *ep0 = mp->ma_table; register dictentry *ep; cmpfunc compare = PyString_Type.tp_compare; /* make sure this function doesn't have to handle non-string keys */ if (!PyString_Check(key)) { #ifdef SHOW_CONVERSION_COUNTS ++converted; #endif mp->ma_lookup = lookdict; return lookdict(mp, key, hash); } /* We must come up with (i, incr) such that 0 <= i < ma_size and 0 < incr < ma_size and both are a function of hash */ i = (~hash) & mask; /* We use ~hash instead of hash, as degenerate hash functions, such as for ints , can have lots of leading zeros. It's not really a performance risk, but better safe than sorry. */ ep = &ep0[i]; if (ep->me_key == NULL || ep->me_key == key) return ep; if (ep->me_key == dummy) freeslot = ep; else { if (ep->me_hash == hash && compare(ep->me_key, key) == 0) { return ep; } freeslot = NULL; } /* Derive incr from hash, just to make it more arbitrary. Note that incr must not be 0, or we will get into an infinite loop.*/ incr = (hash ^ ((unsigned long)hash >> 3)) & mask; if (!incr) incr = mask; for (;;) { ep = &ep0[(i+incr)&mask]; if (ep->me_key == NULL) { if (freeslot != NULL) return freeslot; else return ep; } if (ep->me_key == dummy) { if (freeslot == NULL) freeslot = ep; } else if (ep->me_key == key || (ep->me_hash == hash && compare(ep->me_key, key) == 0)) { return ep; } /* Cycle through GF(2^n)-{0} */ incr = incr << 1; if (incr > mask) incr ^= mp->ma_poly; /* This will implicitly clear the highest bit */ } } /* Internal routine to insert a new item into the table. Used both by the internal resize routine and by the public insert routine. Eats a reference to key and one to value. */ static void insertdict(register dictobject *mp, PyObject *key, long hash, PyObject *value) { PyObject *old_value; register dictentry *ep; ep = (mp->ma_lookup)(mp, key, hash); if (ep->me_value != NULL) { old_value = ep->me_value; ep->me_value = value; Py_DECREF(old_value); /* which **CAN** re-enter */ Py_DECREF(key); } else { if (ep->me_key == NULL) mp->ma_fill++; else Py_DECREF(ep->me_key); ep->me_key = key; ep->me_hash = hash; ep->me_value = value; mp->ma_used++; } } /* Restructure the table by allocating a new table and reinserting all items again. When entries have been deleted, the new table may actually be smaller than the old one. */ static int dictresize(dictobject *mp, int minused) { register int oldsize = mp->ma_size; register int newsize, newpoly; register dictentry *oldtable = mp->ma_table; register dictentry *newtable; register dictentry *ep; register int i; for (i = 0, newsize = MINSIZE; ; i++, newsize <<= 1) { if (i > sizeof(polys)/sizeof(polys[0])) { /* Ran out of polynomials */ PyErr_NoMemory(); return -1; } if (newsize > minused) { newpoly = polys[i]; break; } } newtable = PyMem_NEW(dictentry, newsize); if (newtable == NULL) { PyErr_NoMemory(); return -1; } memset(newtable, '\0', sizeof(dictentry) * newsize); mp->ma_size = newsize; mp->ma_poly = newpoly; mp->ma_table = newtable; mp->ma_fill = 0; mp->ma_used = 0; /* Make two passes, so we can avoid decrefs (and possible side effects) till the table is copied */ for (i = 0, ep = oldtable; i < oldsize; i++, ep++) { if (ep->me_value != NULL) insertdict(mp,ep->me_key,ep->me_hash,ep->me_value); } for (i = 0, ep = oldtable; i < oldsize; i++, ep++) { if (ep->me_value == NULL) { Py_XDECREF(ep->me_key); } } if (oldtable != NULL) PyMem_DEL(oldtable); return 0; } PyObject * PyDict_GetItem(PyObject *op, PyObject *key) { long hash; dictobject *mp = (dictobject *)op; if (!PyDict_Check(op)) { return NULL; } if (mp->ma_table == NULL) return NULL; #ifdef CACHE_HASH if (!PyString_Check(key) || (hash = ((PyStringObject *) key)->ob_shash) == -1) #endif { hash = PyObject_Hash(key); if (hash == -1) { PyErr_Clear(); return NULL; } } return (mp->ma_lookup)(mp, key, hash)->me_value; } int PyDict_SetItem(register PyObject *op, PyObject *key, PyObject *value) { register dictobject *mp; register long hash; if (!PyDict_Check(op)) { PyErr_BadInternalCall(); return -1; } mp = (dictobject *)op; #ifdef CACHE_HASH if (PyString_Check(key)) { #ifdef INTERN_STRINGS if (((PyStringObject *)key)->ob_sinterned != NULL) { key = ((PyStringObject *)key)->ob_sinterned; hash = ((PyStringObject *)key)->ob_shash; } else #endif { hash = ((PyStringObject *)key)->ob_shash; if (hash == -1) hash = PyObject_Hash(key); } } else #endif { hash = PyObject_Hash(key); if (hash == -1) return -1; } /* if fill >= 2/3 size, double in size */ if (mp->ma_fill*3 >= mp->ma_size*2) { if (dictresize(mp, mp->ma_used*2) != 0) { if (mp->ma_fill+1 > mp->ma_size) return -1; } } Py_INCREF(value); Py_INCREF(key); insertdict(mp, key, hash, value); return 0; } int PyDict_DelItem(PyObject *op, PyObject *key) { register dictobject *mp; register long hash; register dictentry *ep; PyObject *old_value, *old_key; if (!PyDict_Check(op)) { PyErr_BadInternalCall(); return -1; } #ifdef CACHE_HASH if (!PyString_Check(key) || (hash = ((PyStringObject *) key)->ob_shash) == -1) #endif { hash = PyObject_Hash(key); if (hash == -1) return -1; } mp = (dictobject *)op; if (((dictobject *)op)->ma_table == NULL) goto empty; ep = (mp->ma_lookup)(mp, key, hash); if (ep->me_value == NULL) { empty: PyErr_SetObject(PyExc_KeyError, key); return -1; } old_key = ep->me_key; Py_INCREF(dummy); ep->me_key = dummy; old_value = ep->me_value; ep->me_value = NULL; mp->ma_used--; Py_DECREF(old_value); Py_DECREF(old_key); return 0; } void PyDict_Clear(PyObject *op) { int i, n; register dictentry *table; dictobject *mp; if (!PyDict_Check(op)) return; mp = (dictobject *)op; table = mp->ma_table; if (table == NULL) return; n = mp->ma_size; mp->ma_size = mp->ma_used = mp->ma_fill = 0; mp->ma_table = NULL; for (i = 0; i < n; i++) { Py_XDECREF(table[i].me_key); Py_XDECREF(table[i].me_value); } PyMem_DEL(table); } int PyDict_Next(PyObject *op, int *ppos, PyObject **pkey, PyObject **pvalue) { int i; register dictobject *mp; if (!PyDict_Check(op)) return 0; mp = (dictobject *)op; i = *ppos; if (i < 0) return 0; while (i < mp->ma_size && mp->ma_table[i].me_value == NULL) i++; *ppos = i+1; if (i >= mp->ma_size) return 0; if (pkey) *pkey = mp->ma_table[i].me_key; if (pvalue) *pvalue = mp->ma_table[i].me_value; return 1; } /* Methods */ static void dict_dealloc(register dictobject *mp) { register int i; register dictentry *ep; Py_TRASHCAN_SAFE_BEGIN(mp) PyObject_GC_Fini(mp); for (i = 0, ep = mp->ma_table; i < mp->ma_size; i++, ep++) { if (ep->me_key != NULL) { Py_DECREF(ep->me_key); } if (ep->me_value != NULL) { Py_DECREF(ep->me_value); } } if (mp->ma_table != NULL) PyMem_DEL(mp->ma_table); mp = (dictobject *) PyObject_AS_GC(mp); PyObject_DEL(mp); Py_TRASHCAN_SAFE_END(mp) } static int dict_print(register dictobject *mp, register FILE *fp, register int flags) { register int i; register int any; register dictentry *ep; i = Py_ReprEnter((PyObject*)mp); if (i != 0) { if (i < 0) return i; fprintf(fp, "{...}"); return 0; } fprintf(fp, "{"); any = 0; for (i = 0, ep = mp->ma_table; i < mp->ma_size; i++, ep++) { if (ep->me_value != NULL) { if (any++ > 0) fprintf(fp, ", "); if (PyObject_Print((PyObject *)ep->me_key, fp, 0)!=0) { Py_ReprLeave((PyObject*)mp); return -1; } fprintf(fp, ": "); if (PyObject_Print(ep->me_value, fp, 0) != 0) { Py_ReprLeave((PyObject*)mp); return -1; } } } fprintf(fp, "}"); Py_ReprLeave((PyObject*)mp); return 0; } static PyObject * dict_repr(dictobject *mp) { auto PyObject *v; PyObject *sepa, *colon; register int i; register int any; register dictentry *ep; i = Py_ReprEnter((PyObject*)mp); if (i != 0) { if (i > 0) return PyString_FromString("{...}"); return NULL; } v = PyString_FromString("{"); sepa = PyString_FromString(", "); colon = PyString_FromString(": "); any = 0; for (i = 0, ep = mp->ma_table; i < mp->ma_size && v; i++, ep++) { if (ep->me_value != NULL) { if (any++) PyString_Concat(&v, sepa); PyString_ConcatAndDel(&v, PyObject_Repr(ep->me_key)); PyString_Concat(&v, colon); PyString_ConcatAndDel(&v, PyObject_Repr(ep->me_value)); } } PyString_ConcatAndDel(&v, PyString_FromString("}")); Py_ReprLeave((PyObject*)mp); Py_XDECREF(sepa); Py_XDECREF(colon); return v; } static int dict_length(dictobject *mp) { return mp->ma_used; } static PyObject * dict_subscript(dictobject *mp, register PyObject *key) { PyObject *v; long hash; if (mp->ma_table == NULL) { PyErr_SetObject(PyExc_KeyError, key); return NULL; } #ifdef CACHE_HASH if (!PyString_Check(key) || (hash = ((PyStringObject *) key)->ob_shash) == -1) #endif { hash = PyObject_Hash(key); if (hash == -1) return NULL; } v = (mp->ma_lookup)(mp, key, hash) -> me_value; if (v == NULL) PyErr_SetObject(PyExc_KeyError, key); else Py_INCREF(v); return v; } static int dict_ass_sub(dictobject *mp, PyObject *v, PyObject *w) { if (w == NULL) return PyDict_DelItem((PyObject *)mp, v); else return PyDict_SetItem((PyObject *)mp, v, w); } static PyMappingMethods dict_as_mapping = { (inquiry)dict_length, /*mp_length*/ (binaryfunc)dict_subscript, /*mp_subscript*/ (objobjargproc)dict_ass_sub, /*mp_ass_subscript*/ }; static PyObject * dict_keys(register dictobject *mp, PyObject *args) { register PyObject *v; register int i, j; if (!PyArg_NoArgs(args)) return NULL; v = PyList_New(mp->ma_used); if (v == NULL) return NULL; for (i = 0, j = 0; i < mp->ma_size; i++) { if (mp->ma_table[i].me_value != NULL) { PyObject *key = mp->ma_table[i].me_key; Py_INCREF(key); PyList_SetItem(v, j, key); j++; } } return v; } static PyObject * dict_values(register dictobject *mp, PyObject *args) { register PyObject *v; register int i, j; if (!PyArg_NoArgs(args)) return NULL; v = PyList_New(mp->ma_used); if (v == NULL) return NULL; for (i = 0, j = 0; i < mp->ma_size; i++) { if (mp->ma_table[i].me_value != NULL) { PyObject *value = mp->ma_table[i].me_value; Py_INCREF(value); PyList_SetItem(v, j, value); j++; } } return v; } static PyObject * dict_items(register dictobject *mp, PyObject *args) { register PyObject *v; register int i, j; if (!PyArg_NoArgs(args)) return NULL; v = PyList_New(mp->ma_used); if (v == NULL) return NULL; for (i = 0, j = 0; i < mp->ma_size; i++) { if (mp->ma_table[i].me_value != NULL) { PyObject *key = mp->ma_table[i].me_key; PyObject *value = mp->ma_table[i].me_value; PyObject *item = PyTuple_New(2); if (item == NULL) { Py_DECREF(v); return NULL; } Py_INCREF(key); PyTuple_SetItem(item, 0, key); Py_INCREF(value); PyTuple_SetItem(item, 1, value); PyList_SetItem(v, j, item); j++; } } return v; } static PyObject * dict_update(register dictobject *mp, PyObject *args) { register int i; dictobject *other; dictentry *entry; if (!PyArg_Parse(args, "O!", &PyDict_Type, &other)) return NULL; if (other == mp) goto done; /* a.update(a); nothing to do */ /* Do one big resize at the start, rather than incrementally resizing as we insert new items. Expect that there will be no (or few) overlapping keys. */ if ((mp->ma_fill + other->ma_used)*3 >= mp->ma_size*2) { if (dictresize(mp, (mp->ma_used + other->ma_used)*3/2) != 0) return NULL; } for (i = 0; i < other->ma_size; i++) { entry = &other->ma_table[i]; if (entry->me_value != NULL) { Py_INCREF(entry->me_key); Py_INCREF(entry->me_value); insertdict(mp, entry->me_key, entry->me_hash, entry->me_value); } } done: Py_INCREF(Py_None); return Py_None; } static PyObject * dict_copy(register dictobject *mp, PyObject *args) { if (!PyArg_Parse(args, "")) return NULL; return PyDict_Copy((PyObject*)mp); } PyObject * PyDict_Copy(PyObject *o) { register dictobject *mp; register int i; dictobject *copy; dictentry *entry; if (o == NULL || !PyDict_Check(o)) { PyErr_BadInternalCall(); return NULL; } mp = (dictobject *)o; copy = (dictobject *)PyDict_New(); if (copy == NULL) return NULL; if (mp->ma_used > 0) { if (dictresize(copy, mp->ma_used*3/2) != 0) return NULL; for (i = 0; i < mp->ma_size; i++) { entry = &mp->ma_table[i]; if (entry->me_value != NULL) { Py_INCREF(entry->me_key); Py_INCREF(entry->me_value); insertdict(copy, entry->me_key, entry->me_hash, entry->me_value); } } } return (PyObject *)copy; } int PyDict_Size(PyObject *mp) { if (mp == NULL || !PyDict_Check(mp)) { PyErr_BadInternalCall(); return 0; } return ((dictobject *)mp)->ma_used; } PyObject * PyDict_Keys(PyObject *mp) { if (mp == NULL || !PyDict_Check(mp)) { PyErr_BadInternalCall(); return NULL; } return dict_keys((dictobject *)mp, (PyObject *)NULL); } PyObject * PyDict_Values(PyObject *mp) { if (mp == NULL || !PyDict_Check(mp)) { PyErr_BadInternalCall(); return NULL; } return dict_values((dictobject *)mp, (PyObject *)NULL); } PyObject * PyDict_Items(PyObject *mp) { if (mp == NULL || !PyDict_Check(mp)) { PyErr_BadInternalCall(); return NULL; } return dict_items((dictobject *)mp, (PyObject *)NULL); } #define NEWCMP #ifdef NEWCMP /* Subroutine which returns the smallest key in a for which b's value is different or absent. The value is returned too, through the pval argument. No reference counts are incremented. */ static PyObject * characterize(dictobject *a, dictobject *b, PyObject **pval) { PyObject *diff = NULL; int i; *pval = NULL; for (i = 0; i < a->ma_size; i++) { if (a->ma_table[i].me_value != NULL) { PyObject *key = a->ma_table[i].me_key; PyObject *aval, *bval; /* XXX What if PyObject_Compare raises an exception? */ if (diff != NULL && PyObject_Compare(key, diff) > 0) continue; aval = a->ma_table[i].me_value; bval = PyDict_GetItem((PyObject *)b, key); /* XXX What if PyObject_Compare raises an exception? */ if (bval == NULL || PyObject_Compare(aval, bval) != 0) { diff = key; *pval = aval; } } } return diff; } static int dict_compare(dictobject *a, dictobject *b) { PyObject *adiff, *bdiff, *aval, *bval; int res; /* Compare lengths first */ if (a->ma_used < b->ma_used) return -1; /* a is shorter */ else if (a->ma_used > b->ma_used) return 1; /* b is shorter */ /* Same length -- check all keys */ adiff = characterize(a, b, &aval); if (PyErr_Occurred()) return -1; if (adiff == NULL) return 0; /* a is a subset with the same length */ bdiff = characterize(b, a, &bval); if (PyErr_Occurred()) return -1; /* bdiff == NULL would be impossible now */ res = PyObject_Compare(adiff, bdiff); if (res == 0) res = PyObject_Compare(aval, bval); return res; } #else /* !NEWCMP */ static int dict_compare(dictobject *a, dictobject *b) { PyObject *akeys, *bkeys; int i, n, res; if (a == b) return 0; if (a->ma_used == 0) { if (b->ma_used != 0) return -1; else return 0; } else { if (b->ma_used == 0) return 1; } akeys = dict_keys(a, (PyObject *)NULL); bkeys = dict_keys(b, (PyObject *)NULL); if (akeys == NULL || bkeys == NULL) { /* Oops, out of memory -- what to do? */ /* For now, sort on address! */ Py_XDECREF(akeys); Py_XDECREF(bkeys); if (a < b) return -1; else return 1; } PyList_Sort(akeys); PyList_Sort(bkeys); n = a->ma_used < b->ma_used ? a->ma_used : b->ma_used; /* smallest */ res = 0; for (i = 0; i < n; i++) { PyObject *akey, *bkey, *aval, *bval; long ahash, bhash; akey = PyList_GetItem(akeys, i); bkey = PyList_GetItem(bkeys, i); res = PyObject_Compare(akey, bkey); if (res != 0) break; #ifdef CACHE_HASH if (!PyString_Check(akey) || (ahash = ((PyStringObject *) akey)->ob_shash) == -1) #endif { ahash = PyObject_Hash(akey); if (ahash == -1) PyErr_Clear(); /* Don't want errors here */ } #ifdef CACHE_HASH if (!PyString_Check(bkey) || (bhash = ((PyStringObject *) bkey)->ob_shash) == -1) #endif { bhash = PyObject_Hash(bkey); if (bhash == -1) PyErr_Clear(); /* Don't want errors here */ } aval = (a->ma_lookup)(a, akey, ahash) -> me_value; bval = (b->ma_lookup)(b, bkey, bhash) -> me_value; res = PyObject_Compare(aval, bval); if (res != 0) break; } if (res == 0) { if (a->ma_used < b->ma_used) res = -1; else if (a->ma_used > b->ma_used) res = 1; } Py_DECREF(akeys); Py_DECREF(bkeys); return res; } #endif /* !NEWCMP */ static PyObject * dict_has_key(register dictobject *mp, PyObject *args) { PyObject *key; long hash; register long ok; if (!PyArg_ParseTuple(args, "O:has_key", &key)) return NULL; #ifdef CACHE_HASH if (!PyString_Check(key) || (hash = ((PyStringObject *) key)->ob_shash) == -1) #endif { hash = PyObject_Hash(key); if (hash == -1) return NULL; } ok = (mp->ma_size != 0 && (mp->ma_lookup)(mp, key, hash)->me_value != NULL); return PyInt_FromLong(ok); } static PyObject * dict_get(register dictobject *mp, PyObject *args) { PyObject *key; PyObject *failobj = Py_None; PyObject *val = NULL; long hash; if (!PyArg_ParseTuple(args, "O|O:get", &key, &failobj)) return NULL; if (mp->ma_table == NULL) goto finally; #ifdef CACHE_HASH if (!PyString_Check(key) || (hash = ((PyStringObject *) key)->ob_shash) == -1) #endif { hash = PyObject_Hash(key); if (hash == -1) return NULL; } val = (mp->ma_lookup)(mp, key, hash)->me_value; finally: if (val == NULL) val = failobj; Py_INCREF(val); return val; } static PyObject * dict_setdefault(register dictobject *mp, PyObject *args) { PyObject *key; PyObject *failobj = Py_None; PyObject *val = NULL; long hash; if (!PyArg_ParseTuple(args, "O|O:setdefault", &key, &failobj)) return NULL; if (mp->ma_table == NULL) goto finally; #ifdef CACHE_HASH if (!PyString_Check(key) || (hash = ((PyStringObject *) key)->ob_shash) == -1) #endif { hash = PyObject_Hash(key); if (hash == -1) return NULL; } val = (mp->ma_lookup)(mp, key, hash)->me_value; finally: if (val == NULL) { val = failobj; if (PyDict_SetItem((PyObject*)mp, key, failobj)) val = NULL; } Py_XINCREF(val); return val; } static PyObject * dict_clear(register dictobject *mp, PyObject *args) { if (!PyArg_NoArgs(args)) return NULL; PyDict_Clear((PyObject *)mp); Py_INCREF(Py_None); return Py_None; } static int dict_traverse(PyObject *op, visitproc visit, void *arg) { int i = 0, err; PyObject *pk; PyObject *pv; while (PyDict_Next(op, &i, &pk, &pv)) { err = visit(pk, arg); if (err) return err; err = visit(pv, arg); if (err) return err; } return 0; } static int dict_tp_clear(PyObject *op) { PyDict_Clear(op); return 0; } static PyMethodDef mapp_methods[] = { {"has_key", (PyCFunction)dict_has_key, METH_VARARGS}, {"keys", (PyCFunction)dict_keys}, {"items", (PyCFunction)dict_items}, {"values", (PyCFunction)dict_values}, {"update", (PyCFunction)dict_update}, {"clear", (PyCFunction)dict_clear}, {"copy", (PyCFunction)dict_copy}, {"get", (PyCFunction)dict_get, METH_VARARGS}, {"setdefault", (PyCFunction)dict_setdefault, METH_VARARGS}, {NULL, NULL} /* sentinel */ }; static PyObject * dict_getattr(dictobject *mp, char *name) { return Py_FindMethod(mapp_methods, (PyObject *)mp, name); } PyTypeObject PyDict_Type = { PyObject_HEAD_INIT(&PyType_Type) 0, "dictionary", sizeof(dictobject) + PyGC_HEAD_SIZE, 0, (destructor)dict_dealloc, /*tp_dealloc*/ (printfunc)dict_print, /*tp_print*/ (getattrfunc)dict_getattr, /*tp_getattr*/ 0, /*tp_setattr*/ (cmpfunc)dict_compare, /*tp_compare*/ (reprfunc)dict_repr, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ &dict_as_mapping, /*tp_as_mapping*/ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_GC, /*tp_flags*/ 0, /* tp_doc */ (traverseproc)dict_traverse, /* tp_traverse */ (inquiry)dict_tp_clear, /* tp_clear */ }; /* For backward compatibility with old dictionary interface */ PyObject * PyDict_GetItemString(PyObject *v, char *key) { PyObject *kv, *rv; kv = PyString_FromString(key); if (kv == NULL) return NULL; rv = PyDict_GetItem(v, kv); Py_DECREF(kv); return rv; } int PyDict_SetItemString(PyObject *v, char *key, PyObject *item) { PyObject *kv; int err; kv = PyString_FromString(key); if (kv == NULL) return -1; PyString_InternInPlace(&kv); /* XXX Should we really? */ err = PyDict_SetItem(v, kv, item); Py_DECREF(kv); return err; } int PyDict_DelItemString(PyObject *v, char *key) { PyObject *kv; int err; kv = PyString_FromString(key); if (kv == NULL) return -1; err = PyDict_DelItem(v, kv); Py_DECREF(kv); return err; }